Conditional Generation by RNN & Attention Hung-yi Lee

Outline

- Generation
- Attention
- Tips for Generation
- Pointer Network

Generation

Generating a structured object component-by-component

Generation

http://youtien.pixnet.net/blog/post/4604096-%E6%8E%A8%E6%96%87%E6%8E%A5%E9%BE%8 D%E4%B9%8B%E5%B0%8D%E8%81%AF%E9%81 %8A%E6%88%B2

- Sentences are composed of characters/words
 - Generating a character/word at each time by RNN

Consider as a sentence

blue red yellow gray

Train a language model based on the "sentences"

• Images are composed of pixels

Generation

• Generating a pixel at each time by RNN

Generation

3 x 3 images

• Images are composed of pixels

Generation

- Image
 - Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu, Pixel Recurrent Neural Networks, arXiv preprint, 2016
 - Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, Koray Kavukcuoglu, Conditional Image Generation with PixelCNN Decoders, arXiv preprint, 2016
- Video
 - Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu, Pixel Recurrent Neural Networks, arXiv preprint, 2016
- Handwriting
 - Alex Graves, Generating Sequences With Recurrent Neural Networks, arXiv preprint, 2013
- Speech
 - Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu, WaveNet: A Generative Model for Raw Audio, 2016

- We don't want to simply generate some random sentences.
- Generate sentences based on conditions:

Caption Generation

 Represent the input condition as a vector, and consider the vector as the input of RNN generator

Sequence-tosequence learning

- Represent the input condition as a vector, and consider the vector as the input of RNN generator
- E.g. Machine translation / Chat-bot

M: Hello U: Hi M: Hi Need to consider longer context during chatting

https://www.youtube.com/watch?v=e2MpOmyQJw4

M: Hello

Serban, Iulian V., Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau, 2015 "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.

Attention

Dynamic Conditional Generation

Dynamic Conditional Generation

Encoder

Decoder

Attention-based model

$$\succ \alpha = h^T W z$$

 $= 0.5h^3 + 0.5h^4$

Speech Recognition

Model	Clean WER	Noisy WER
CLDNN-HMM [22]	8.0	8.9
LAS	14.1	16.5
LAS + LM Rescoring	10.3	12.0

William Chan, Navdeep Jaitly, Quoc V. Le, Oriol Vinyals, "Listen, Attend and Spell", ICASSP, 2016

Image Caption Generation

Image Caption Generation Word 1 A vector for each region z^0 z^1 filter T filter T filter T weighted CNN filter 🕴 filter 🋉 filter sum 0.1 0.7 0.1 0.0 0.1 0.0 filter T filter T filter T filter filter filter

Image Caption Generation W<mark>ord</mark> 2 W<mark>ord</mark> 1 A vector for each region z^2 z^0 z^1 weighted filter T filter T filter T CNN sum filter **†** filter **†** filter 0.0 0.8 0.2 0.0 0.0 0.0 filter T filter T filter T filter filter filter

Image Caption Generation

A woman is throwing a <u>frisbee</u> in a park.

A \underline{dog} is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML, 2015

Image Caption Generation

A large white bird standing in a forest.

A woman holding a <u>clock</u> in her hand.

A man wearing a hat and a hat on a <u>skateboard</u>.

A person is standing on a beach with a surfboard.

A woman is sitting at a table with a large pizza.

A man is talking on his cell phone while another man watches.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML, 2015

Ref: A man and a woman ride a motorcycle A man and a woman are talking on the road

Ref: A woman is frying food **Someone** is **frying** a **fish** in a **pot**

Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo Larochelle, Aaron Courville, "Describing Videos by Exploiting Temporal Structure", ICCV, 2015

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus, "End-To-End Memory Networks", NIPS, 2015

Story Module Wei Fang, Juei-Yang Hsu, Story Tree-LSTM Tree-LSTM · · · Tree-LSTM Hung-yi Lee, Lin-Shan Lee, "Hierarchical Attention Model Memory Question Module for Improved Machine ► Attention Attention ► Attention s_0 sn-1Comprehension of Spoken s_1 Ouestion Module Content", SLT, 2016 q_1 $\overline{q_2}$ q_n q_0 Tree-LSTM hop 2 hop 1 hop n Choice B Choice C Choice D Choice A 01 Tree-LSTM Tree-LSTM Tree-LSTM Tree-LSTM V_{C_3} V_{C_1} V_{C_2} V_{C_4} f_{12} • i1 f_{13} q_n h_2 c_2 O 0 The conventions may vary. Answer Module attention attention query vector story vector sn q_n 00 osine sim. +SoftMax Мe eighted sum memory vectors $m_t = W^{(m)} o_t$ evidence vectors $c_t = W^{(C)} o_t$ phrase vectors ot tree structures of story sentences

von Neumann architecture

Neural Turing Machine not only read from memory

Also modify the memory through attention

https://www.quora.com/How-does-the-Von-Neumann-architectureprovide-flexibility-for-program-development

Real version

Tips for Generation

Mismatch between Train and Test

Mismatch between Train and Test

Generation

We do not know the reference

Testing: Output of model is the input of the next step.

Training: the inputs are reference.

Exposure Bias

一步錯,步步錯

Modifying Training Process?

When we try to decrease the loss for both step 1 and 2

Training is matched to testing.

In practice, it is hard to train in this way.

Scheduled Sampling

Caption generation on MSCOCO

	BLEU-4	METEOR	CIDER
Always from reference	28.8	24.2	89.5
Always from model	11.2	15.7	49.7
Scheduled Sampling	30.6	24.3	92.1

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer, Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, arXiv preprint, 2015

Beam Search

The green path has higher score. Not possible to check all the paths

Beam Search

Keep several best path at each step Beam size = 2

Beam Search

The size of beam is 3 in this example.

https://github.com/tensorflow/tensorflow/issues/654#issuecomment-169009989

Better Idea?

U: 你覺得如何? M: 高興想笑 or 難過想哭

Object level v.s. Component level

 Minimizing the error defined on component level is not equivalent to improving the generated objects

Ref: The dog is running fast

Optimize object-level criterion instead of component-level crossentropy. object-level criterion: $R(y, \hat{y})$ Gradient Descent? y: generated utterance, \hat{y} : ground truth

Reinforcement learning?

Start with observation *s*₁

Observation s_2

Observation s_3

Chopra, Michael Auli, Wojciech Zaremba, "Sequence Level Training with Recurrent Neural Networks", ICLR, 2016

The action we take influence the observation in the next step

Pointer Network

Oriol Vinyals, Meire Fortunato, Navdeep Jaitly, Pointer Network, NIPS, 2015

Method	TRAINED n	n	ACCURACY	Area
LSTM [1]	50	50	1.9%	FAIL
+ATTENTION [5]	50	50	38.9%	99.7%
PTR-NET	50	50	72.6%	99.9%
LSTM [1]	5	5	87.7%	99.6%
Ptr-Net	5-50	5	92.0%	99.6%
LSTM [1]	10	10	29.9%	FAIL
Ptr-Net	5-50	10	87.0%	99.8%
Ptr-Net	5-50	50	69.6%	99.9%
PTR-NET	5-50	100	50.3%	99.9%
Ptr-Net	5-50	200	22.1%	99.9%
Ptr-Net	5-50	500	1.3%	99.2%

(a) LSTM, m=50, n=50 (d) Ptr-Net, m=5-50, n=500

Applications

Jiatao Gu, Zhengdong Lu, Hang Li, Victor O.K. Li, "Incorporating Copying Mechanism in Sequence-to-Sequence Learning", ACL, 2016 Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, Yoshua Bengio, "Pointing the Unknown Words", ACL, 2016

Machine Translation

