
RL and GAN for Sentence
Generation and Chat-bot

Hung-yi Lee

Outline

• Policy Gradient

• SeqGAN
• Two techniques: MCMC, partial

• Experiments: SeqGAN and dialogue

• Original GAN
• MadliGAN

• Gumbel

Review: Chat-bot

• Sequence-to-sequence learning

Encoder Generator

Input
sentence

output
sentence

history
information

Training data:

A: OOO

B: XXX

A: ∆ ∆ ∆

…
…

…
…

B: XXX

A: ∆ ∆ ∆

A: OOO

Review: Encoder

好我 很

to generator

Encoder

Hierarchical Encoder

嗎你 好

Review: Generator

A A

A

B

A

B

A

A

B

B

B

<BOS>

can be different with attention mechanism

: condition
from decoder

Review: Training Generator

Reference:

A

B

𝐶 =෍

𝑡

𝐶𝑡

Minimizing
cross-entropy of
each component

A

A

B

B

A

B

<BOS>

A

B B

𝐶1 𝐶2 𝐶3

: condition
from decoder

Review: Training Generator

ො𝑥𝑡

𝐶𝑡

𝐶𝑡 = −𝑙𝑜𝑔𝑃𝜃 ො𝑥𝑡| ො𝑥1:𝑡−1, ℎ

𝐶 =෍

𝑡

𝐶𝑡

𝐶 = −෍

𝑡

𝑙𝑜𝑔𝑃 ො𝑥𝑡| ො𝑥1:𝑡−1, ℎ

Maximizing the likelihood of
generating ො𝑥 given h

= −𝑙𝑜𝑔𝑃 ො𝑥1|ℎ 𝑃 ො𝑥𝑡| ො𝑥1:𝑡−1, ℎ

⋯𝑃 ො𝑥𝑇| ො𝑥1:𝑇−1, ℎ
= −𝑙𝑜𝑔𝑃 ො𝑥|ℎ

Training data: ℎ, ො𝑥 ℎ: input sentence and history/context

ො𝑥: correct response (word sequence)

ො𝑥𝑡: t-th word, ො𝑥1:𝑡: first t words of ො𝑥

…… ……

ො𝑥𝑡+1

𝐶𝑡+1

ො𝑥𝑡−1

𝐶𝑡−1

generator output

…… ……

RL for
Sentence Generation

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, Dan Jurafsky,

“Deep Reinforcement Learning for Dialogue Generation“, EMNLP 2016

Introduction

• Machine obtains feedback from user

• Chat-bot learns to maximize the expected reward

https://image.freepik.com/free-vector/variety-
of-human-avatars_23-2147506285.jpg

How are
you?

Bye bye ☺

Hello

Hi ☺

-10 3

http://www.freepik.com/free-vector/variety-
of-human-avatars_766615.htm

Maximizing Expected Reward

𝜃∗ = 𝑎𝑟𝑔max
𝜃

ത𝑅𝜃

ത𝑅𝜃

Encoder Generator

𝜃

ℎ 𝑥 Human

=෍

ℎ

𝑃 ℎ ෍

𝑥

𝑅 ℎ, 𝑥 𝑃𝜃 𝑥|ℎ

𝑅 ℎ, 𝑥

Randomness in generator

Probability that the input/history is h

Maximizing expected reward

update

Maximizing Expected Reward

= 𝐸ℎ~𝑃 ℎ 𝐸𝑥~𝑃𝜃 𝑥|ℎ 𝑅 ℎ, 𝑥

≈
1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖

Sample:

𝜃∗ = 𝑎𝑟𝑔max
𝜃

ത𝑅𝜃

=෍

ℎ

𝑃 ℎ ෍

𝑥

𝑅 ℎ, 𝑥 𝑃𝜃 𝑥|ℎ

Maximizing expected reward

Encoder Generator

𝜃

ℎ 𝑥 Human 𝑅 ℎ, 𝑥

update

ത𝑅𝜃

= 𝐸ℎ~𝑃 ℎ ,𝑥~𝑃𝜃 𝑥|ℎ 𝑅 ℎ, 𝑥

ℎ1, 𝑥1 , ℎ2, 𝑥2 , ⋯ , ℎ𝑁 , 𝑥𝑁

Where
is 𝜃?

Policy Gradient

𝛻 ത𝑅𝜃 =෍

ℎ

𝑃 ℎ ෍

𝑥

𝑅 ℎ, 𝑥 𝛻𝑃𝜃 𝑥|ℎ

=෍

ℎ

𝑃 ℎ ෍

𝑥

𝑅 ℎ, 𝑥 𝑃𝜃 𝑥|ℎ
𝛻𝑃𝜃 𝑥|ℎ

𝑃𝜃 𝑥|ℎ

𝑑𝑙𝑜𝑔 𝑓 𝑥

𝑑𝑥
=

1

𝑓 𝑥

𝑑𝑓 𝑥

𝑑𝑥

=෍

ℎ

𝑃 ℎ ෍

𝑥

𝑅 ℎ, 𝑥 𝑃𝜃 𝑥|ℎ 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥|ℎ

≈
1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥|ℎ

= 𝐸ℎ~𝑃 ℎ ,𝑥~𝑃𝜃 𝑥|ℎ 𝑅 ℎ, 𝑥 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥|ℎ

Sampling

=෍

ℎ

𝑃 ℎ ෍

𝑥

𝑅 ℎ, 𝑥 𝑃𝜃 𝑥|ℎത𝑅𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖

Policy Gradient

• Gradient Ascent

𝜃𝑛𝑒𝑤 ← 𝜃𝑜𝑙𝑑 + 𝜂𝛻 ത𝑅𝜃𝑜𝑙𝑑

𝛻 ത𝑅𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|ℎ𝑖

𝑅 ℎ𝑖 , 𝑥𝑖 is positive

After updating 𝜃, 𝑃𝜃 𝑥𝑖|ℎ𝑖 will increase

𝑅 ℎ𝑖 , 𝑥𝑖 is negative

After updating 𝜃, 𝑃𝜃 𝑥𝑖|ℎ𝑖 will decrease

Implementation

1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|ℎ𝑖

1

𝑁
෍

𝑖=1

𝑁

𝑙𝑜𝑔𝑃𝜃 ො𝑥𝑖|ℎ𝑖

1

𝑁
෍

𝑖=1

𝑁

𝛻𝑙𝑜𝑔𝑃𝜃 ො𝑥𝑖|ℎ𝑖

1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖 𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|ℎ𝑖

𝑅 ℎ𝑖 , ො𝑥𝑖 = 1 Sampling as training data

weighted by 𝑅 ℎ𝑖 , 𝑥𝑖

Objective
Function

Gradient

Maximum
Likelihood

Reinforcement
Learning

Training
Data

ℎ1, ො𝑥1 , … , ℎ𝑁 , ො𝑥𝑁 ℎ1, 𝑥1 , … , ℎ𝑁 , 𝑥𝑁

Encoder
Genera

tor
ℎ𝑖

Human

𝑥𝑖

𝑅 ℎ𝑖 , 𝑥𝑖

Implementation

𝜃𝑡

ℎ1, 𝑥1

ℎ2, 𝑥2

ℎ𝑁 , 𝑥𝑁

…
…

𝑅 ℎ1, 𝑥1

𝑅 ℎ2, 𝑥2

𝑅 ℎ𝑁 , 𝑥𝑁

…
…

1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖 𝛻𝑙𝑜𝑔𝑃𝜃𝑡 𝑥
𝑖|ℎ𝑖

𝜃𝑡+1 ← 𝜃𝑡 + 𝜂𝛻 ത𝑅𝜃𝑡

1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖 𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|ℎ𝑖

New Objective:

𝜃0 can be well pre-
trained from

ℎ1, ො𝑥1 , … , ℎ𝑁 , ො𝑥𝑁

Add a Baseline

Ideal
case

Due to
Sampling

(h,x1)

Because it is probability …

Not
sampled

1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖 𝑙𝑜𝑔∇𝑃𝜃 𝑥𝑖|ℎ𝑖

𝑃𝜃 𝑥|ℎ

(h,x2) (h,x3)

(h,x1) (h,x2) (h,x3) (h,x1) (h,x2) (h,x3)

(h,x1) (h,x2) (h,x3)

If 𝑅 ℎ𝑖 , 𝑥𝑖 is always positive

1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖 − 𝑏 𝑙𝑜𝑔𝛻𝑃𝜃 𝑥𝑖|ℎ𝑖

Add a Baseline

(h,x1)

1

𝑁
෍

𝑖=1

𝑁

𝑅 ℎ𝑖 , 𝑥𝑖 𝑙𝑜𝑔∇𝑃𝜃 𝑥𝑖|ℎ𝑖

There are several ways to obtain the baseline b.

𝑃𝜃 𝑥|ℎ

(h,x2) (h,x3)

Not
sampled

Add
baseline

If 𝑅 ℎ𝑖 , 𝑥𝑖 is always positive

(h,x1) (h,x2) (h,x3)

Alpha GO style training !

• Let two agents talk to each other

How old are you?

See you.

See you.

See you.

How old are you?

I am 16.

I though you were 12.

What make you
think so?

Using a pre-defined evaluation function to compute R(h,x)

Example Reward

• The final reward R(h,x) is the weighted sum of
three terms r1(h,x), r2(h,x) and r3(h,x)

𝑅 ℎ, 𝑥 = λ1𝑟1 ℎ, 𝑥 + λ2𝑟2 ℎ, 𝑥 + λ3𝑟3 ℎ, 𝑥

Ease of
answering

Information
Flow

Semantic
Coherence

不要成為
句點王

說點
新鮮的

不要前言
不對後語

Example Results

Reinforcement learning?
Start with

observation 𝑠1 Observation 𝑠2 Observation 𝑠3

Action 𝑎1: “right”

Obtain reward
𝑟1 = 0

Action 𝑎2 : “fire”

(kill an alien)

Obtain reward
𝑟2 = 5

Reinforcement learning?

A A

A

B

A

B

A

A

B

B

B

observation

Actions set

The action we take influence
the observation in the next step

<B
O

S>

Action taken
𝑟 = 0 𝑟 = 0

𝑟𝑒𝑤𝑎𝑟𝑑:

R(“BAA”, reference)

Marc'Aurelio Ranzato, Sumit
Chopra, Michael Auli, Wojciech
Zaremba, “Sequence Level Training with
Recurrent Neural Networks”, ICLR, 2016

Reinforcement learning?

• One can use any advanced RL techniques here.

• For example, actor-critic
• Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh

Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, Yoshua
Bengio. "An Actor-Critic Algorithm for Sequence
Prediction." ICLR, 2017.

SeqGAN

Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, “SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient”, AAAI, 2017

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, Dan
Jurafsky, “Adversarial Learning for Neural Dialogue Generation”, arXiv

preprint, 2017

Basic Idea – Sentence Generation

Generator

Discriminator

sentence x

sentence x Real or fake

Sampling from RNN at each time
step also provides randomness

Original GAN

code z sampled from
prior distribution

Algorithm – Sentence Generation

• Initialize generator Gen and discriminator Dis

• In each iteration:

• Sample real sentences 𝑥 from database

• Generate sentences ෤𝑥 by Gen

• Update Dis to increase 𝐷𝑖𝑠 𝑥 and decrease 𝐷𝑖𝑠 ෤𝑥

• Update Gen such that

Generator
Discrimi

nator
scalar

update

Basic Idea – Chat-bot

Discriminator

Input
sentence/history h response sentence x

Real or fake

http://www.nipic.com/show/3/83/3936650kd7476069.html

human
dialogues

Chatbot

En De

Conditional GAN

response sentence x

Input
sentence/history h

Algorithm – Chat-bot

• Initialize generator Gen and discriminator Dis

• In each iteration:

• Sample real history ℎ and sentence 𝑥 from database

• Sample real history ℎ′ from database, and generate
sentences ෤𝑥 by Gen(ℎ′)

• Update Dis to increase 𝐷𝑖𝑠 ℎ, 𝑥 and decrease
𝐷𝑖𝑠 ℎ′, ෤𝑥

• Update Gen such that

Discrimi
nator

scalar

update

Training data:

A: OOO

B: XXX

A: ∆ ∆ ∆

…
…

…
…

ℎ

h

x

Chatbot

En De

A A

A

B

A

B

A

A

B

B

B

<BOS>

Can we do
backpropogation?

Tuning generator
will not change the
output.

Encoder

Discrimi
nator

scalar

update

Alternative:
improved WGAN

scalarChatbot

En De

Reinforcement Learning

• Consider the output of discriminator as reward

• Update generator to increase discriminator = to get
maximum reward

• Different from typical RL

• The discriminator would update

𝛻 ത𝑅𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

𝑅ℎ𝑖 𝑥
𝑖 − 𝑏 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|ℎ𝑖

Discrimi
nator

scalar

update
Chatbot

En De

reward

Discriminator Score

𝐷 ℎ𝑖 , 𝑥𝑖

Reward for Every Generation Step

𝛻 ത𝑅𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

𝐷 ℎ𝑖 , 𝑥𝑖 − 𝑏 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|ℎ𝑖

ℎ𝑖 = “What is your name?”

𝑥𝑖 = “I don’t know”

𝐷 ℎ𝑖 , 𝑥𝑖 − 𝑏 is negative

Update 𝜃 to decrease log𝑃𝜃 𝑥𝑖|ℎ𝑖

𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|ℎ𝑖 = 𝑙𝑜𝑔𝑃 𝑥1
𝑖 |ℎ𝑖 + 𝑙𝑜𝑔𝑃 𝑥2

𝑖 |ℎ𝑖 , 𝑥1
𝑖 + 𝑙𝑜𝑔𝑃 𝑥3

𝑖 |ℎ𝑖 , 𝑥1:2
𝑖

𝑃 "𝐼"|ℎ𝑖

ℎ𝑖 = “What is your name?”

𝑥𝑖 = “I am John”

𝐷 ℎ𝑖 , 𝑥𝑖 − 𝑏 is positive

Update 𝜃 to increase log𝑃𝜃 𝑥𝑖|ℎ𝑖

𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|ℎ𝑖 = 𝑙𝑜𝑔𝑃 𝑥1
𝑖 |ℎ𝑖 + 𝑙𝑜𝑔𝑃 𝑥2

𝑖 |ℎ𝑖 , 𝑥1
𝑖 + 𝑙𝑜𝑔𝑃 𝑥3

𝑖 |ℎ𝑖 , 𝑥1:2
𝑖

𝑃 "𝐼"|ℎ𝑖

Reward for Every Generation Step

Method 2. Discriminator For Partially Decoded Sequences

𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|ℎ𝑖 = 𝑙𝑜𝑔𝑃 𝑥1
𝑖 |ℎ𝑖 + 𝑙𝑜𝑔𝑃 𝑥2

𝑖 |ℎ𝑖 , 𝑥1
𝑖 + 𝑙𝑜𝑔𝑃 𝑥3

𝑖 |ℎ𝑖 , 𝑥1:2
𝑖

ℎ𝑖 = “What is your name?” 𝑥𝑖 = “I don’t know”

𝑃 "𝐼"|ℎ𝑖 𝑃 "𝑑𝑜𝑛′𝑡"|ℎ𝑖 , "𝐼" 𝑃 "𝑘𝑛𝑜𝑤"|ℎ𝑖 , "𝐼 𝑑𝑜𝑛′𝑡"

Method 1. Monte Carlo (MC) Search

𝛻 ത𝑅𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=1

𝑇

𝑄 ℎ𝑖 , 𝑥1:𝑡
𝑖 − 𝑏 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥𝑡

𝑖|ℎ𝑖 , 𝑥1:𝑡−1
𝑖

Monte Carlo Search

• How to estimate 𝑄 ℎ𝑖 , 𝑥1:𝑡
𝑖 ?

𝑄 "𝑊ℎ𝑎𝑡 𝑖𝑠 𝑦𝑜𝑢𝑟 𝑛𝑎𝑚𝑒? ", "𝐼"

I am John

I am happy

I don’t know

I am superman

ℎ𝑖 𝑥1
𝑖

𝑥𝐴 =

𝑥𝐵 =

𝑥𝐶 =

𝑥𝐷 =

𝐷 ℎ𝑖 , 𝑥𝐴

𝐷 ℎ𝑖 , 𝑥𝐵

𝐷 ℎ𝑖 , 𝑥𝐶

𝐷 ℎ𝑖 , 𝑥𝐷

= 1.0

= 0.1

= 0.1

= 0.8

𝑄 ℎ𝑖 , "𝐼" = 0.5

A roll-out generator
for sampling is needed

avg

Rewarding Partially Decoded
Sequences
• Training a discriminator that is able to assign rewards to

both fully and partially decoded sequences

• Break generated sequences into partial sequences

h=“What is your name?”, x=“I am john”

h=“What is your name?”, x=“I don’t know”

Dis
scalarh

x
h=“What is your name?”, x=“I am”

h=“What is your name?”, x=“I”

h=“What is your name?”, x=“I don’t”

h=“What is your name?”, x=“I”

𝑄 ℎ, 𝑥1:𝑡

Dis
h

𝑥1:𝑡

Teacher Forcing

• The training of generative model is unstable
• This reward is used to promote or discourage the

generator’s own generated sequences.

• Usually It knows that the generated results are bad, but
does not know what results are good.

• Teacher Forcing

Obtained by sampling

Adding more Data:

Training Data for SeqGAN:

ℎ1, ො𝑥1 , … , ℎ𝑁 , ො𝑥𝑁

ℎ1, 𝑥1 , … , ℎ𝑁 , 𝑥𝑁

weighted by 𝐷 ℎ𝑖 , 𝑥𝑖

Real data

Consider 𝐷 ℎ𝑖 , ො𝑥𝑖 = 1

Experiments in paper

• Sentence generation: Synthetic data

• Given an LSTM

• Using the LSTM to generate a lot of sequences
as “real data”

• Generator learns from the “real data” by
different approaches

• Generator generates some sequences

• Using the LSTM to compute the negative log
likelihood (NLL) of the sequences

• Smaller is better

Experiments in paper
- Synthetic data

Experiments in paper
- Real data

Results - Chat-bot

To Learn More …

Algorithm – MaliGAN

• Initialize generator Gen and discriminator Dis

• In each iteration:

• Sample real sentences 𝑥 from database

• Generate sentences ෤𝑥 by Gen

• Update Dis to maximize

• Update Gen by gradient

1

𝑁
෍

𝑖=1

𝑁
𝑟𝐷 𝑥𝑖

σ𝑖=1
𝑁 𝑟𝐷 𝑥𝑖

− 𝑏 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥𝑖

Maximum-likelihood Augmented Discrete GAN

෍

𝑥

𝑙𝑜𝑔𝐷 𝑥 +෍

෤𝑥

𝑙𝑜𝑔 1 − 𝐷 ෤𝑥

𝑟𝐷 𝑥𝑖 =
𝐷 𝑥𝑖

1 − 𝐷 𝑥𝑖

𝐷 ℎ𝑖 , 𝑥𝑖

To learn more ……

• Professor forcing
• Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng

Zhang, Aaron Courville, Yoshua Bengio, “Professor
Forcing: A New Algorithm for Training Recurrent
Networks”, NIPS, 2016

• Handling discrete output by methods other than
policy gradient
• MaliGAN, Boundary-seeking GAN
• Yizhe Zhang, Zhe Gan, Lawrence Carin, “Generating Text

via Adversarial Training”, Workshop on Adversarial
Training, NIPS, 2016

• Matt J. Kusner, José Miguel Hernández-Lobato, “GANS
for Sequences of Discrete Elements with the Gumbel-
softmax Distribution”, arXiv preprint, 2016

