Deep
Reinforcement Learning

Example: Playing Video Game

Start with
observation s Observation s, Observation s3

\ - Obtain reward \ / Obtain reward

T‘1=0 T2=5

(kill an alien)

Usually there is some randomness in the environment

Example: Playing Video Game

Start with
observation s Observation s, Observation s3

This is an episode.
Game Over
(spaceship destroyed)

Obtain reward 7 |

After many turns

IIIIIIIIIIIIIIIII>

Approaches

Model-free
Approach

Policy-based Value-based

Learning an Actor Actor + Critic Learning a Critic

Model-based Approach

On-policy v.s. Off-policy

* On-policy: The agent learned and the agent
interacting with the environment is the same.

* Off-policy: The agent learned and the agent
interacting with the environment is different.

Asynchronous Advantage
Actor-Critic (A3C)

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, “Asynchronous Methods for
Deep Reinforcement Learning”, ICML, 2016

Actor is a Neural network

* Input of neural network: the observation of machine
represented as a vector or a matrix

e Output neural network : each action corresponds to a
neuron in output layer

NN as actor

\

T left : N
.e 0.7 Probability

* » » ([T nght 0.2 & of taking
"1, fire 0.1 the action

pixels

J
Sample an action based on the probability or argmax

Actor can also have continuous action.

Actor — Goodness of an Actor

* Given an actor (s) with network parameter 87

* Use the actor m(s) to play the video game
* Start with observation s b _ T
* Machine decides to take a, Total reward: R = Zt:l Tt

« Machine obtains reward 7y Even with the same actor,

* Machine sees observation s, R is different each time
* Machine decides to take a,

+ Machine obtains reward 7, Randomness in the actor
* Machine sees observation s3 and the game

We define Rgr as the
expected total reward

* Machine decides to take ar
* Machine obtains reward 7

Ry evaluates the goodness of an actor m(s)

Actor — Policy Gradient

O™ « O™ +nVRgr Using ™ to obtain {7, 72, -, 7V}

N N Tn
_ 1 1
VRgrn =~ N 2 R(t™)VlogP(t"|0™)= Nz R(t™) z Viogp(al|sf, 0™)
n=1 t=1

NTn

n n -~ | What if we replace
N ZZ R(z")Vlogp(aclse, 6™) R(t™) with /"
n=

If in T machine takes aj' when seeing s}*
R(t™) is positive Tuning O to increase p(a}|sst)
R(t™) is negative Tuning O to decrease p(a}|s{')

It is very important to consider the cumulative reward R(t") of
the whole trajectory 7" instead of immediate reward r;/*

Critic

* A critic does not determine the action.
* Given an actor T, it evaluates the how good the actor is

* State value function V™ (s)

* When using actor m, the cumulated reward expects to
be obtained after seeing observation (state) s

V”(S)
’ v
scalar

V™(s) is large V™(s) is smaller

BI5E (2577 = bad

Critic
iy

LI

ek

SoR e

V

LS4 N 313
TR AR

NigW tk
L

B it
EnWHEN
SER-IK
L B

How to estimate V™ (s)

* Monte-Carlo based approach
* The critic watches m playing the game

After seeing s,,

Until the end of the episode,

Sa—> V™ —V"(s.)>G,
the cumulated reward is G,

After seeing s,

Until the end of the episode,

— /T 174U G
the cumulated reward is G, Sp—> V* = V7" (sp)Gy

How to estimate V™ (s)

* Temporal-difference approach

S A T St

S —> VT[> Vn(St) Vﬂ(sa) Vﬂ(sb)

— V7 (s¢) =V (Sty1) —> 17

sepr— VT = V7 (st41)

Some applications have very long episodes, so that
delaying all learning until an episode's end is too slow.

MCv.s. TD

Larger variance
Sag—> V' —V"(s,)e>G, &

unbiased

Se—> V" —=V(s) «=> 17+ V7 (sp41) «— YT St+1

Smaller variance \

May be biased

MCv.s. TD

[Sutton, v2,
Example 6.4]

* The critic has the following 8 episodes
* s, ¥ =0,s,,7 =0, END

* s, 7 =1,END
* s, 7 =1,END
* sp, v =1,END
* s, 7 =1,END
* s, 7 =1,END
* sp, v =1,END
* s, 7 =0,END

(The actions are ignored here.)

V*(sp) = 3/4
Vi(s,) =2 07 3/4?

Monte-Carlo: V™ (s,) =0
Temporal-difference:

Vi(sy) +r =V7"(sy)
3/4 0 3/4

Actor-Critic

7T interacts with

the environment

T = TD or MC

Update actor from |
m — 1 basedon M Learning V™(s)

V™ (s)

Advantage Actor- Crltlc |t emromment

TD or MIC
9” «— g" ~+ nVRgn:
Update actor from
VRQ” N Ty T — 1 based on
V7™ (s)
z] "Wlogp(al|si, 0™) :

Evaluated by critic
Advantage Function: 1" — (V7(s?") — V™ (sl1))

Positive advantage function Increasing the prob. of action a}'

Baseline

Negative advantage function 0 decreasing the prob. of action a}

Advantage Actor-Critic

* Tips
* The parameters of actor m(s) and critic V™(s)
can be shared

—> |eft

/ Network — right

S = Network \ —> fire
Network —»V™(s)

* Use output entropy as regularization for (s)
* Larger entropy is preferred — exploration

Asynchronous

Source of image:
https://medium.com/emergent-
future/simple-reinforcement-learning-with-
tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2#.68x6na709

1. Copy global parameters

2. Sampling some data

ABO
61

3. Compute gradients

4. Update global

models :?iﬂ

AG

Worker 1

!

Global Network

Pohcy r(s) V(S)

b\+nA9

I (other workers also

Worker 2

!

Input (s) == update models)

Worker 3 Worker n

! !

Environment 1 Environment 2 Environment3 ... Environmentn

Pathwise Derivative
Policy Gradient

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller,
“Deterministic Policy Gradient Algorithms”, ICML, 2014

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,

Tom Erez, Yuval Tassa, David Silver, Daan Wierstra, “CONTINUOUS CONTROL WITH DEEP
REINFORCEMENT LEARNING”, ICLR, 2016

Actor Critic

Pathwise derivative
policy gradient

Original Actor-critic

http://www.cartomad.com/comic/109000081104011.html

Another Critic

* State-action value function Q™ (s, a)

 When using actor m, the cumulated reward expects to
be obtained after seeing observation s and taking a

: » 07 (s, a) — Q7 (s,a = left)
Qm > S Q" — Q"(s,a =right)
scalar - _
a » — Q™ (s,a = fire)

for discrete action only

Another Way to use Critic

Original
Actor-critic

decrease increase

Q-Learning We know the parameters
- Q" (s,a)/” -
of Q function

From Q function we
know that taking a’ at P
state s is better than a <:|

Q-Learning

! 1T interacts with

the environment

T = TD or MC

Find a new actor N A S

T’ “better” than T |
A\

N\

Estimate Q instead of V

Q-Learning

T=r TD or MC

Find a new actor : -
' “better” than SECHIIE Gy
\ \

? Estimate Q instead of V

* Given Q™ (s, a), find a new actor '’ “better” than
. “Better”: VT (s) = V™(s), for all state s

n'(s) = arg max 0™ (s,a)

» 1’ does not have extra parameters. It depends on Q
» Not suitable for continuous action a (solve it later)

Q-Learning

n'(s) =argmax Q™ (s,a)
’ V™ (s) = V™(s), for all state s
v(s) = Q"(s,m(s))
< max 0" (s,a) = Q”(s,n’(s)) =yr (s)

Vi(s) < Q”(S,n’(s))
= Epr[1i41 + VT (Seq)|se = 5]
< Ep|rgg + Qn(5t+1»”'(5t+1))|5t = s]
= Epr[Tey1 + Tegz + VT (Sea2)|Se = 5]
S Ep|resq + 142 + Qn(5t+2»ﬂ’(st+2))|5t = 5]

e SV (5)

Estimate Q™ (s, a) by TD

CSo Qe T St 7

Q" (s¢, ar) Qn(5t+1: 7T(5t+1))

St — T -
Q — Q™ (s¢, a¢)
T + Qn(5t+1»ﬂ(5t+1)) - Qn
—
T(S¢v1)

‘ v ¥

freeze freeze

Double DQN

e Q value is usually over estimate

Q(s¢, ar) < > Tt + max Q(s¢4+1,a)

Q(St+1Ja) I - I -

Tend to select the action
that is over-estimated

&

Double DQN

* Q value is usually over estimate

Q(se, ar) < > Tt + max Q(St+1, @)

e Double DQN: two functions Q and Q’

st ap) ~—— 7+ Q' (Str1,arg max Q(se41,a))

If Q over-estimate a, so it is selected. Q" would give it proper value.

How about Q' overestimate? The action will not select by Q.

Hado V. Hasselt, “Double Q-learning”, NIPS 2010
Hado van Hasselt, Arthur Guez, David Silver, “Deep Reinforcement Learning with
Double Q-learning”, AAAI 2016

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van
Hasselt, Marc Lanctot, Nando de Freitas, "Dueling

| . Network Architectures for Deep Reinforcement
D U e | n g D QN Learning”, arXiv preprint, 2015

/ Action
State c; a Qs,a)
S
14 "
/ .f Actaion
State — Q(s,a)
: ﬁ; s,a
/

A(s,a)=Q(s,a) — V(s)

Dueling DQON - Visualization

(from the link in the original paper)

Dueling DQON - Visualization

(from the link in the original paper)

Pathwise Derivative Policy
Gradient

n'(s) = argmaxQ™(s,a) « a is the output of an actor
a

Gradient ascent: Fixed
O — 9T + nVerQ™ (s, a)
S =
Updatem — '
ot — o B
S —> Actor — a = a—
T
1\)
Y

This is a large network

T interacts with - Replay
Buffer

the environment

Find a new actor
' “better” than 1 |

\
O™ — 9™ 4+ nVerQ" (s, a)

Updatem — n’

I , Actor _,I
T

TD or MC

Learning Q™ (s, a)

Q" (s, a)

DDPG Algorithm

Initialize critic network 69 and actor network 67

Initialize target critic network 82" = 69 and target actor
I/
network 8™ = 0™

Initialize replay buffer R

In each iteration

* Use m(s) + noise to interact with the environment,
collect a set of {s;, a;, 1¢, S¢4+1}, put them in R

Sample N examples {s,,, a,, 1, Sp+1} from R
2
Update critic Q to minimize: L = zn(yn — Q(syy, an))
* V=1 + Q’(Sn+1»ﬂ’(5n+1))

Using target networks
Update actor to maximize: | = ., Q(s,, m(s,,)

Update target networks:

0™ — mO™ + (1 —m)o™
The target networks g0’ 90 1 g0’
update slower emf< +(1-—m)

Connection with GAN

GAN as Actor-critic

Action: generate
an object

{EHz B HY Action

—PW—V 1/0 realistic or not

Actor-critic as GAN

Generator sometimes
generates good stuff

Get some reward

Discrimi
nator

—

Q(s,a)

Estimated reward

Method GANs AC

Freezing learning yEs yes
Label smoothing yes no
Historical averaging yes no
Minibatch discrimination =~ yes no
Batch normalization yes yes
Target networks n/a yes
Replay buffers no yes
Entropy regularization no yes
Compatibility no yes

David Pfau, Oriol Vinyals, “Connecting Generative Adversarial
Networks and Actor-Critic Methods”, arXiv preprint, 2016

