
Deep
Reinforcement Learning

Start with
observation 𝑠1 Observation 𝑠2 Observation 𝑠3

Example: Playing Video Game

Action 𝑎1: “right”

Obtain reward
𝑟1 = 0

Action 𝑎2 : “fire”

(kill an alien)

Obtain reward
𝑟2 = 5

Usually there is some randomness in the environment

Start with
observation 𝑠1 Observation 𝑠2 Observation 𝑠3

Example: Playing Video Game

After many turns

Action 𝑎𝑇

Obtain reward 𝑟𝑇

Game Over
(spaceship destroyed)

This is an episode.

Learn to maximize the
expected cumulative
reward per episode

Approaches

Policy-based Value-based

Learning an Actor Learning a CriticActor + Critic

Model-based Approach

Model-free
Approach

On-policy v.s. Off-policy

• On-policy: The agent learned and the agent
interacting with the environment is the same.

• Off-policy: The agent learned and the agent
interacting with the environment is different.

阿光下棋 佐為下棋、阿光在旁邊看

Asynchronous Advantage
Actor-Critic (A3C)

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.

Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, “Asynchronous Methods for

Deep Reinforcement Learning”, ICML, 2016

Actor is a Neural network

• Input of neural network: the observation of machine
represented as a vector or a matrix

• Output neural network : each action corresponds to a
neuron in output layer

……

NN as actor

pixels
fire

right

left
Probability
of taking

the action

Actor can also have continuous action.

0.7

0.2

0.1

Sample an action based on the probability or argmax

Actor – Goodness of an Actor

• Given an actor 𝜋 𝑠 with network parameter 𝜃𝜋

• Use the actor 𝜋 𝑠 to play the video game
• Start with observation 𝑠1
• Machine decides to take 𝑎1
• Machine obtains reward 𝑟1
• Machine sees observation 𝑠2
• Machine decides to take 𝑎2
• Machine obtains reward 𝑟2
• Machine sees observation 𝑠3
• ……

• Machine decides to take 𝑎𝑇
• Machine obtains reward 𝑟𝑇

Total reward: 𝑅 = σ𝑡=1
𝑇 𝑟𝑡

Even with the same actor,
𝑅 is different each time

We define ത𝑅𝜃𝜋 as the
expected total reward

ത𝑅𝜃𝜋 evaluates the goodness of an actor 𝜋 𝑠

Randomness in the actor
and the game

END

Actor – Policy Gradient

𝛻 ത𝑅𝜃𝜋 ≈
1

𝑁
෍

𝑛=1

𝑁

𝑅 𝜏𝑛 𝛻𝑙𝑜𝑔𝑃 𝜏𝑛|𝜃𝜋 =
1

𝑁
෍

𝑛=1

𝑁

𝑅 𝜏𝑛 ෍

𝑡=1

𝑇𝑛

𝛻𝑙𝑜𝑔𝑝 𝑎𝑡
𝑛|𝑠𝑡

𝑛, 𝜃𝜋

𝜃𝜋
′
← 𝜃𝜋 + 𝜂𝛻 ത𝑅𝜃𝜋

=
1

𝑁
෍

𝑛=1

𝑁

෍

𝑡=1

𝑇𝑛

𝑅 𝜏𝑛 𝛻𝑙𝑜𝑔𝑝 𝑎𝑡
𝑛|𝑠𝑡

𝑛, 𝜃𝜋

If in 𝜏𝑛 machine takes 𝑎𝑡
𝑛 when seeing 𝑠𝑡

𝑛

𝑅 𝜏𝑛 is positive Tuning 𝜃 to increase 𝑝 𝑎𝑡
𝑛|𝑠𝑡

𝑛

𝑅 𝜏𝑛 is negative Tuning 𝜃 to decrease 𝑝 𝑎𝑡
𝑛|𝑠𝑡

𝑛

It is very important to consider the cumulative reward 𝑅 𝜏𝑛 of
the whole trajectory 𝜏𝑛 instead of immediate reward 𝑟𝑡

𝑛

What if we replace
𝑅 𝜏𝑛 with 𝑟𝑡

𝑛 ……

Using 𝜃𝜋 to obtain 𝜏1, 𝜏2, ⋯ , 𝜏𝑁

Critic

• A critic does not determine the action.

• Given an actor π, it evaluates the how good the actor is

• State value function 𝑉𝜋 𝑠

• When using actor 𝜋, the cumulated reward expects to
be obtained after seeing observation (state) s

𝑉𝜋s
𝑉𝜋 𝑠

scalar

𝑉𝜋 𝑠 is large 𝑉𝜋 𝑠 is smaller

Critic

𝑉以前的阿光 大馬步飛 = bad

𝑉變強的阿光 大馬步飛 = good

How to estimate 𝑉𝜋 𝑠

• Monte-Carlo based approach
• The critic watches 𝜋 playing the game

After seeing 𝑠𝑎,

Until the end of the episode,
the cumulated reward is 𝐺𝑎

After seeing 𝑠𝑏,

Until the end of the episode,
the cumulated reward is 𝐺𝑏

𝑉𝜋 𝑠𝑎𝑉𝜋𝑠𝑎 𝐺𝑎

𝑉𝜋 𝑠𝑏𝑉𝜋𝑠𝑏 𝐺𝑏

How to estimate 𝑉𝜋 𝑠

• Temporal-difference approach

⋯𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1⋯

𝑉𝜋 𝑠𝑡𝑉𝜋𝑠𝑡

𝑉𝜋 𝑠𝑡+1𝑉𝜋𝑠𝑡+1

𝑉𝜋 𝑠𝑎 + 𝑟𝑡 = 𝑉𝜋 𝑠𝑏

𝑉𝜋 𝑠𝑡 − 𝑉𝜋 𝑠𝑡+1 𝑟𝑡-

Some applications have very long episodes, so that
delaying all learning until an episode's end is too slow.

MC v.s. TD

𝑉𝜋 𝑠𝑎𝑉𝜋𝑠𝑎 𝐺𝑎
Larger variance

unbiased

𝑉𝜋 𝑠𝑡𝑉𝜋𝑠𝑡 𝑉𝜋 𝑠𝑡+1 𝑉𝜋 𝑠𝑡+1𝑟 +

Smaller variance
May be biased

MC v.s. TD

• The critic has the following 8 episodes
• 𝑠𝑎 , 𝑟 = 0, 𝑠𝑏 , 𝑟 = 0, END

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 0, END

[Sutton, v2,
Example 6.4]

(The actions are ignored here.)

𝑉𝜋 𝑠𝑎 =?

𝑉𝜋 𝑠𝑏 = 3/4

0? 3/4?

Monte-Carlo:

Temporal-difference:

𝑉𝜋 𝑠𝑎 = 0

𝑉𝜋 𝑠𝑎 + 𝑟 = 𝑉𝜋 𝑠𝑏
3/43/4 0

Actor-Critic

𝜋 interacts with
the environment

Learning 𝑉𝜋 𝑠
Update actor from
𝜋 → 𝜋’ based on

𝑉𝜋 𝑠

TD or MC

?

𝜋 = 𝜋′

Advantage Actor-Critic

Evaluated by critic

𝑟𝑡
𝑛 − 𝑉𝜋 𝑠𝑡

𝑛 − 𝑉𝜋 𝑠𝑡+1
𝑛Advantage Function:

Expected reward 𝑟𝑡
𝑛 we

obtain if we use actor 𝜋
The reward 𝑟𝑡

𝑛 we truly
obtain when taking action 𝑎𝑡

𝑛

Positive advantage function Increasing the prob. of action 𝑎𝑡
𝑛

Negative advantage function decreasing the prob. of action 𝑎𝑡
𝑛

Baseline
is added

𝛻 ത𝑅𝜃𝜋

𝜃𝜋
′
← 𝜃𝜋 + 𝜂𝛻 ത𝑅𝜃𝜋

=
1

𝑁
෍

𝑛=1

𝑁

෍

𝑡=1

𝑇𝑛

𝑅 𝜏𝑛 𝛻𝑙𝑜𝑔𝑝 𝑎𝑡
𝑛|𝑠𝑡

𝑛 , 𝜃𝜋

Advantage Actor-Critic

• Tips

• The parameters of actor 𝜋 𝑠 and critic 𝑉𝜋 𝑠
can be shared

• Use output entropy as regularization for 𝜋 𝑠

• Larger entropy is preferred → exploration

Network𝑠

Network

fire

right

left

Network

𝑉𝜋 𝑠

Source of image:
https://medium.com/emergent-
future/simple-reinforcement-learning-with-
tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2#.68x6na7o9

Asynchronous

𝜃2

𝜃1

1. Copy global parameters

2. Sampling some data

3. Compute gradients

4. Update global
models

∆𝜃

∆𝜃

𝜃1

+𝜂∆𝜃𝜃1

(other workers also
update models)

Pathwise Derivative
Policy Gradient

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller,
“Deterministic Policy Gradient Algorithms”, ICML, 2014

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, Daan Wierstra, “CONTINUOUS CONTROL WITH DEEP
REINFORCEMENT LEARNING”, ICLR, 2016

http://www.cartomad.com/comic/109000081104011.html

Original Actor-criticPathwise derivative
policy gradient

Actor Critic

Another Critic

• State-action value function 𝑄𝜋 𝑠, 𝑎

• When using actor 𝜋, the cumulated reward expects to
be obtained after seeing observation s and taking a

𝑄𝜋
s 𝑄𝜋 𝑠, 𝑎

scalar
a

𝑄𝜋 𝑠, 𝑎 = 𝑙𝑒𝑓𝑡

𝑄𝜋 𝑠, 𝑎 = 𝑓𝑖𝑟𝑒

𝑄𝜋 𝑠, 𝑎 = 𝑟𝑖𝑔ℎ𝑡𝑄𝜋

for discrete action only

s

Another Way to use Critic
𝑄𝜋 𝑠, 𝑎

𝑎1 𝑎2

𝑄𝜋 𝑠, 𝑎

𝑎

increasedecrease

We know the parameters
of Q function

Original
Actor-critic

Q-Learning

𝑎′

From Q function we
know that taking a’ at
state s is better than a

Q-Learning

𝜋 interacts with
the environment

Learning 𝑄𝜋 𝑠, 𝑎
Find a new actor
𝜋′ “better” than 𝜋

TD or MC

?

𝜋 = 𝜋′

Estimate Q instead of V

Q-Learning

• Given 𝑄𝜋 𝑠, 𝑎 , find a new actor 𝜋′ “better” than 𝜋

• “Better”: 𝑉𝜋′ 𝑠 ≥ 𝑉𝜋 𝑠 , for all state s

𝜋′ 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑄𝜋 𝑠, 𝑎

➢𝜋′ does not have extra parameters. It depends on Q

➢Not suitable for continuous action a (solve it later)

𝜋′ 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑄𝜋 𝑠, 𝑎

𝑉𝜋′ 𝑠 ≥ 𝑉𝜋 𝑠 , for all state s

𝑉𝜋 𝑠 ≤ 𝑄𝜋 𝑠, 𝜋′ 𝑠

= 𝑉𝜋′ 𝑠

= 𝐸𝜋′[𝑟𝑡+1 + 𝑉𝜋 𝑠𝑡+1 |𝑠𝑡 = 𝑠]

≤ 𝐸𝜋′[𝑟𝑡+1 + 𝑄𝜋 𝑠𝑡+1, 𝜋
′ 𝑠𝑡+1 |𝑠𝑡 = 𝑠]

= 𝐸𝜋′[𝑟𝑡+1 + 𝑟𝑡+2 + 𝑉𝜋 𝑠𝑡+2 |𝑠𝑡 = 𝑠]

≤ 𝐸𝜋′[𝑟𝑡+1 + 𝑟𝑡+2 + 𝑄𝜋 𝑠𝑡+2, 𝜋
′ 𝑠𝑡+2 |𝑠𝑡 = 𝑠]

𝑉𝜋 𝑠 = 𝑄𝜋 𝑠, 𝜋 𝑠

≤ max
𝑎

𝑄𝜋 𝑠, 𝑎 = 𝑄𝜋 𝑠, 𝜋′ 𝑠

Q-Learning

…… ≤ 𝑉𝜋′ 𝑠

Estimate 𝑄𝜋 𝑠, 𝑎 by TD

𝑄𝜋𝑠𝑡

𝑄𝜋
𝑠𝑡+1

𝑟𝑡 +

𝑎𝑡

𝜋 𝑠𝑡+1

⋯𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1⋯

Q𝜋 𝑠𝑡 , 𝑎𝑡

Q𝜋 𝑠𝑡+1, 𝜋 𝑠𝑡+1

Q𝜋 𝑠𝑡+1, 𝜋 𝑠𝑡+1

Q𝜋 𝑠𝑡 , 𝑎𝑡

freeze freeze

Double DQN

• Q value is usually over estimate

𝑄 𝑠𝑡 , 𝑎𝑡 𝑟𝑡 +max
𝑎

𝑄 𝑠𝑡+1, 𝑎

Tend to select the action
that is over-estimated

𝑄 𝑠𝑡+1, 𝑎

Double DQN

• Q value is usually over estimate

• Double DQN: two functions Q and Q’

𝑄 𝑠𝑡 , 𝑎𝑡 𝑟𝑡 +max
𝑎

𝑄 𝑠𝑡+1, 𝑎

Hado V. Hasselt, “Double Q-learning”, NIPS 2010
Hado van Hasselt, Arthur Guez, David Silver, “Deep Reinforcement Learning with
Double Q-learning”, AAAI 2016

𝑄 𝑠𝑡 , 𝑎𝑡 𝑟𝑡 + 𝑄′ 𝑠𝑡+1, 𝑎𝑟𝑔max
𝑎

𝑄 𝑠𝑡+1, 𝑎

If Q over-estimate a, so it is selected. Q’ would give it proper value.

How about Q’ overestimate? The action will not select by Q.

Dueling DQN

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van

Hasselt, Marc Lanctot, Nando de Freitas, “Dueling
Network Architectures for Deep Reinforcement
Learning”, arXiv preprint, 2015

State
s

State
s

Action
a

Action
a

Q(s,a)

Q(s,a)

V(s)

A(s,a)=Q(s,a) – V(s)

Dueling DQN - Visualization

(from the link in the original paper)

Dueling DQN - Visualization

(from the link in the original paper)

Pathwise Derivative Policy
Gradient

𝑄𝜋 𝑄𝜋 𝑠, 𝑎

𝑠

𝑎

= 𝑎𝑟𝑔max
𝑎

𝑄𝜋 𝑠, 𝑎𝜋′ 𝑠

Actor
𝜋

𝑠 𝑎

Update 𝜋 → 𝜋′

=

This is a large network

FixedGradient ascent:

a is the output of an actor

𝜃𝜋
′
← 𝜃𝜋 + 𝜂∇𝜃𝜋𝑄

𝜋 𝑠, 𝑎

𝜋 interacts with
the environment

Learning 𝑄𝜋 𝑠, 𝑎
Find a new actor
𝜋′ “better” than 𝜋

TD or MC𝜋 = 𝜋′

𝑄𝜋 𝑄𝜋 𝑠, 𝑎

𝑠

𝑎Actor
𝜋

𝑠 𝑎

Update 𝜋 → 𝜋′

=

𝜃𝜋
′
← 𝜃𝜋 + 𝜂∇𝜃𝜋𝑄

𝜋 𝑠, 𝑎

Replay
Buffer

• Initialize critic network 𝜃𝑄 and actor network 𝜃𝜋

• Initialize target critic network 𝜃𝑄
′
= 𝜃𝑄 and target actor

network 𝜃𝜋
′
= 𝜃𝜋

• Initialize replay buffer R

• In each iteration

• Use 𝜋 𝑠 + 𝑛𝑜𝑖𝑠𝑒 to interact with the environment,
collect a set of 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 , put them in R

• Sample N examples 𝑠𝑛, 𝑎𝑛, 𝑟𝑛, 𝑠𝑛+1 from R

• Update critic 𝑄 to minimize: 𝐿 = σ𝑛 ො𝑦𝑛 − 𝑄 𝑠𝑛, 𝑎𝑛
2

• ො𝑦𝑛 = 𝑟𝑛 + 𝑄′ 𝑠𝑛+1, 𝜋
′ 𝑠𝑛+1

• Update actor 𝜋 to maximize: 𝐽 = σ𝑛𝑄 𝑠𝑛, 𝜋 𝑠𝑛
• Update target networks:

𝜃𝑄
′
← 𝑚𝜃𝑄 + 1 −𝑚 𝜃𝑄

′
𝜃𝜋

′
← 𝑚𝜃𝜋 + 1 −𝑚 𝜃𝜋

′

DDPG Algorithm

Using target networks

The target networks
update slower

Connection with GAN

GAN as Actor-critic

Generator

Prior

0 0 0 0

1 1 1 1

Discri-
minator

image 1/0

Action: generate
an object

Actor

Critic realistic or not

傳說中的 Action

Actor-critic as GAN

Actor

Critic

Generator sometimes
generates good stuff

Gene
rator

Discrimi
nator

𝑠𝑡 𝑎𝑡𝑠1 𝑠𝑇…… …… 𝑎1 …… 𝑎𝑇……

Get some reward

Estimated reward𝑠

𝑎
𝑄 𝑠, 𝑎

David Pfau, Oriol Vinyals, “Connecting Generative Adversarial
Networks and Actor-Critic Methods”, arXiv preprint, 2016

