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Given structure, each set 
of parameter is a function.

The network structure 
defines a function set.

network structure



Source of image: 
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewPaper/14849



Outline

• Q1: Can shallow network fit any function? 

• Potential of deep

• Q2: How to use deep to fit functions?

• Q3: Is deep better than shallow?

• Review some related theories

NN

ReLU as activation function
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Outline
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Small?

median large

Shallow

Deep

A target function to fit
Eventually cover 𝜃? 

𝜃

What is the 
difference?

1

2

3

Notice: We do not discuss 
optimization and generation today.

e.g. 𝑦 = 𝑥2



Can shallow network 
fit any function? 



Universality 

• Given a shallow network structure  with one hidden layer 
with ReLU activation and linear output 

• Given a L-Lipschitz function 𝑓∗

• How many neurons are needed to approximate 𝑓∗?

𝑥 𝑦+

+

+

1

1

1

…
…

A piece-wise linear 
functions

𝑓



Universality 

• Given a L-Lipschitz function 𝑓∗

• How many neurons are needed to approximate 𝑓∗?

1−Lipschitz?

1−Lipschitz?
(smooth)

𝑓 𝑥1 − 𝑓 𝑥2 ≤ 𝐿 𝑥1 − 𝑥2

L-Lipschitz Function

L=1 for "1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧"

Output 
change

Input 
change



Universality 

• Given a L-Lipschitz function 𝑓∗

• How many neurons are needed to approximate 𝑓∗?

𝑓 ∈ 𝑁 𝐾

Exist 𝑓 ∈ 𝑁 𝐾 , max
0≤𝑥≤1

𝑓 𝑥 − 𝑓∗ 𝑥 ≤ 𝜀

Given a small number 𝜀 > 0

The function space defined by the 
network with K neurons.

The difference between 𝑓 𝑥
and 𝑓∗ 𝑥 is smaller than 𝜀. ≤ 𝜀

What is the number of 𝐾 such that

𝑓 𝑥

𝑓∗ 𝑥

max
0≤𝑥≤1

𝑓 𝑥 − 𝑓∗ 𝑥 ≤ 𝜀

0
1
𝑓 𝑥 − 𝑓∗ 𝑥 2 𝑑𝑥 ≤ 𝜀



Universality 

• L-Lipschitz function 𝑓∗

0 1

Approximate 𝑓∗ by a 
piecewise linear function f 

error

error

How to make the errors ≤ 𝜀

𝑙

≤ 𝑙 × 𝐿

𝑙 × 𝐿 ≤ 𝜀 𝑙 ≤ 𝜀/𝐿

All the functions in 𝑁 𝐾 are 
piecewise linear. 

𝑓 𝑥1 − 𝑓 𝑥2 ≤ 𝐿 𝑥1 − 𝑥2



Universality 

• L-Lipschitz function 𝑓∗

0 1

L/𝜀 segments 

𝜀/𝐿 𝜀/𝐿 𝜀/𝐿

How to make a 1 hidden 
layer relu network have the 
output like green curve?



L/𝜀 segments 

0 1

The summation of the blue 
functions is the green one.

Each blue function can be 
obtained by two relu neurons.

bias

two relu neurons



𝑥 𝑦+

+

+

1

1

1
…
…

1

-1

9

9

-3

-6

1/3 2/3

2

0

1

2

1 2+

1 2+

1

2



L/𝜀 segments 

L/𝜀 segments 

2L/𝜀 relu neurons 

(I do not say this is the most 
efficient way to use the neurons.)

=

𝑦0

𝑦1

𝑦2

𝑦3

…
…
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𝑦
𝑦0

𝑦



Potential of 
deep



Why we need deep?

Yes, shallow network can represent any function.

However, using deep structure is more effective.

𝑥 𝑦+

+

+

1

1

1

…
…



Analogy ─ Programming

• Solve any problem by two lines (shallow)
• Input = K
• Line 1: row no. = MATCH_KEY(K)
• Line 2: Output the value at row no. 

• Considering SVM with kernel

• Using multiple steps to solve problems is more 
efficient (deep)

Input (key) Output (value)

A A’

B B’

C C’

D D’

…… ……

𝑦 =

𝑛

𝛼𝑛𝐾 𝑥𝑛, 𝑥



Analogy

• Logic circuits consists of 
gates

• A two layers of logic gates 
can represent any Boolean 
function.

• Using multiple layers of 
logic gates to build some 
functions are much simpler

• Neural network consists of 
neurons

• A hidden layer network can 
represent any continuous 
function.

• Using multiple layers of 
neurons to represent some 
functions are much simpler

This page is for EE background.

less gates needed

Logic circuits Neural network

less neurons



Analogy

• E.g. parity check

Circuit

Circuit

1 (even)

0 (odd)

For input sequence 
with d bits, 

Two-layer circuit 
need O(2d) gates.

1   0   1   0   

0   0   0   1   

XNOR

With multiple layers, we need only O(d) gates.

1
0
1
0

0
0 1



Why we need deep?

• ReLU networks can represent piecewise linear functions 

Less pieces More pieces

Shallow 
& wide Deep & Narrow

≈
the same 

number of 
parameters



Upper Bound of Linear Pieces 

x
y

0

0

0

0

Each “activation pattern” defines a linear function.

N neurons 2N “activation patterns” 2N “linear pieces” 

Upper Bound



Upper Bound of Linear Pieces 

• Not all the “activation patterns” available

𝑥 𝑦+

+

+

1

1

1

1

1

1

-1

1

1
0

-1 1

In shallow network, each 
neuron only provides one 
linear piece.



Abs Activation Function
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−𝑤

𝑏

𝑏

−𝑏

+
𝑥

𝑤𝑥 + 𝑏

𝑥

1

1
Use two relu to implement 
an abs activation function

𝑤𝑥 + 𝑏

−𝑤𝑥 − 𝑏



𝑥 +
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𝑎1
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𝑎1

0
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21 lines 22 lines



𝑥 +
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𝑎1 𝑎2 +

1

𝑎3

𝑎2

𝑎3

0

1

𝑥

𝑎3

0

1

Each node added The regions are twice.

21 lines 22 lines 23 lines

𝑥

𝑎2

0

1



𝑥 +

1
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21 lines 22 lines 23 lines
…
…
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𝑦1+
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+

1
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𝑦
𝑦0

+1 line

+1 line

Shallow

Deep

2 relu 2 relu 2 relu



Lower Bound of Linear Pieces 

If K is width, H is depth

We can have at least KH pieces

Razvan Pascanu, Guido Montufar, Yoshua Bengio, “On the number of response 
regions of deep feed forward networks with piece-wise linear activations”, ICLR, 

2014
Guido F. Montufar, Razvan Pascanu, Kyunghyun Cho, Yoshua Bengio, “On the 
Number of Linear Regions of Deep Neural Networks”, NIPS, 2014
Raman Arora, Amitabh Basu, Poorya Mianjy, Anirbit Mukherjee, “Understanding 
Deep Neural Networks with Rectified Linear Units”, ICLR 2018
Thiago Serra, Christian Tjandraatmadja, Srikumar Ramalingam, “Bounding and 
Counting Linear Regions of Deep Neural Networks”, arXiv, 2017
Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, Jascha Sohl-Dickstein, On 
the Expressive Power of Deep Neural Networks, ICML, 2017

Depth has much larger influence than depth.



Experimental Results (MNIST)





How much is deep 
better than shallow?



f(x) = x2 Fit the function by equally 
spaced linear pieces

𝑓𝑚 𝑥 : a function with 2m

pieces

𝑓1 𝑥
𝑓2 𝑥

max
0≤𝑥≤1

𝑓 𝑥 − 𝑓𝑚 𝑥 ≤ 𝜀

What is the minimum m?

𝑚 ≥ −
1

2
𝑙𝑜𝑔2𝜀 − 1

2𝑚 ≥
1

2

1

𝜀

𝑂
1

𝜀
neurons

pieces

Shallow:



f(x) = x2

𝑓1 𝑥
𝑓2 𝑥

1

4

1

-
-

𝑓1 𝑥

1

16

𝑓2 𝑥



𝑓𝑚 𝑥 =

1

1

4
1

16
1

4𝑚
……

− − − −……

𝑚 ≥ −
1

2
𝑙𝑜𝑔2𝜀 − 1

𝑥 +

1

+

1

𝑎1 𝑎2 +

1

𝑎𝑚

21 lines 22 lines 2m lines

2𝑚 peices

…

𝑂 𝑙𝑜𝑔2
1

𝜀
neurons 𝑂 𝑙𝑜𝑔2

1

𝜀
layers

𝑂 𝑚 neurons 𝑂 𝑚 layers



Why care about 𝑦 = 𝑥2?

Square
Net

𝑥 𝑥2

𝑦 = 𝑥1𝑥2

=
1

2
𝑥1 + 𝑥2

2 − 𝑥1
2 − 𝑥2

2

Square
Net

Square
Net

Square
Net

𝑥1

𝑥2

+

+ 𝑥1𝑥2

× −0.5

× −0.5

× 0.5

≤ 𝜀

Multiply Net
𝑂 𝑙𝑜𝑔2

1

𝜀
neurons

𝑂 𝑙𝑜𝑔2
1

𝜀
neurons



Polynomial 
𝑦 = 𝑥𝑛

Square
Net

Multiply
Net

Multiply
Net

𝑥 𝑥2 𝑥3 ……

Power(n) Net

𝑦 = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0

Power(n) Net

Power(n-1) Net

…

𝑥 + 𝑦

× 𝑎𝑛

× 𝑎𝑛−1

𝑂 𝑙𝑜𝑔2
1

𝜀
neurons

𝑂 𝑙𝑜𝑔2
1

𝜀
neurons

Use polynomial function to fit other functions.



𝑂
1

𝜀
neurons

Shallow

Deep

𝑂 𝑙𝑜𝑔2
1

𝜀
neurons

This is not sufficient to 
show the power of deep. 

(獵人第二十卷)

Shallow 很
糟的狀態?

Shallow 的最
佳狀態???

Deep v.s. Shallow 



Is Deep better 
than Shallow?



Best of Shallow

• A relu network is a piecewise linear function.

• Using the least pieces to fit the target function.

可達成 夢幻狀態

The lines do not have to connect the end points.

Smaller error

Not 
continuous

max
0≤𝑥≤1

𝑓 𝑥 − 𝑓∗ 𝑥 ≤ 𝜀

0
1
𝑓 𝑥 − 𝑓∗ 𝑥 2 𝑑𝑥 ≤ 𝜀

Use Euclidean



Best of Shallow

• Given a piece, what is the smallest error

𝑥0 𝑥0 + 𝑙

𝑎𝑥 + 𝑏

𝑒2 = න

𝑥0

𝑥0+𝑙

𝑥2 − 𝑎𝑥 + 𝑏
2
𝑑𝑥

𝑙

Find a and b to minimize e2

The minimum value of e2 is 
𝑙5

180

0
1
𝑓 𝑥 − 𝑓∗ 𝑥 2 𝑑𝑥 ≤ 𝜀

Use Euclidean



Warning of Math



Intuition 𝑒2 = න

𝑥0

𝑥0+𝑙

𝑥2 − 𝑎𝑥 + 𝑏
2
𝑑𝑥

റ𝑣

𝑢

𝑤

റ𝑣 − 𝑎𝑤 + 𝑏𝑢 2
Minimize

𝑎𝑤 + 𝑏𝑢

𝑓𝑣 = 𝑥2 𝑓𝑤 = 𝑥 𝑓𝑢 = 1

𝑓𝑣 − 𝑎𝑓𝑤 + 𝑏𝑓𝑢
2

Minimize

𝑓𝑣

𝑎𝑓𝑤 + 𝑏𝑓𝑢



End of Warning



Best of Shallow

• If you have n pieces, what is the best way to arrange the n 
pieces.

The minimum value of e2 is 
𝑙5

180

0 1

𝑙1 𝑙2 𝑙3 𝑙𝑛……



𝑖=1

𝑛

𝑙𝑖 = 1

𝑒1
2 𝑒2

2 𝑒3
2 𝑒𝑛

2

𝐸2 =

𝑖=1

𝑛

𝑒𝑖
2 =

𝑖=1

𝑛
𝑙𝑖

5

180

The best way is “equal segment”

𝑙𝑖 = 1/𝑛
𝐸2 =

𝑖=1

𝑛
1/𝑛 5

180
=

1

180

1

𝑛4



Warning of Math



Hölder's inequality

• Given 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 and 𝑏1, 𝑏2, ⋯ , 𝑏𝑛

• Given 𝑙1, 𝑙2, ⋯ , 𝑙𝑛 and 1,1,⋯ , 1



𝑖=1

𝑛

𝑎𝑖𝑏𝑖 ≤ 

𝑖=1

𝑛

𝑎𝑖
𝑝

1/𝑝



𝑖=1

𝑛

𝑏𝑖
𝑞

1/𝑞

Minimize σ𝑖=1
𝑛 𝑙𝑖

5



𝑖=1

𝑛

𝑙𝑖 = 1

1

𝑝
+
1

𝑞
= 1



𝑖=1

𝑛

𝑙𝑖 ≤ 

𝑖=1

𝑛

𝑙𝑖
𝑝

1/𝑝



𝑖=1

𝑛

1𝑞

1/𝑞

= 1 = 𝑛

𝑛−1/𝑞 ≤ 

𝑖=1

𝑛

𝑙𝑖
𝑝

1/𝑝

𝑛−𝑝/𝑞 ≤

𝑖=1

𝑛

𝑙𝑖
𝑝

1 +
𝑝

𝑞
= 𝑝 1 − 𝑝 = −

𝑝

𝑞

1 − 𝑝

𝑛−4 ≤

𝑖=1

𝑛

𝑙𝑖
5

p=5



End of Warning



Best of Shallow

• If you have n pieces, what is the best way to arrange the n 
pieces.

To make 𝐸 ≤ 𝜀, what is the n we need? 

𝐸2 =
1

180

1

𝑛4
𝐸 =

1

180

1

𝑛2

𝐸 =
1

180

1

𝑛2
≤ 𝜀 𝑛2 ≥

1

180

1

𝜀
𝑛 ≥

4 1

180

1

𝜀

At least 𝑂
1

𝜀
neurons

The minimum value of e2 is 
𝑙5

180



𝑂
1

𝜀
neurons

Shallow

Deep

𝑂 𝑙𝑜𝑔2
1

𝜀
neurons

Deep is exponentially 
better than shallow.

(獵人第二十卷)

Shallow 很
糟的狀態?

Shallow 的最
佳狀態???

Deep v.s. Shallow 

Shallow 
最佳狀態



More related theories



More Theories 

• A function expressible by a 3-layer feedforward network 
cannot be approximated by 2-layer network.

• Unless the width of 2-layer network is VERY large

• Applied on activation functions beyond relu

Ronen Eldan, Ohad Shamir, “The Power of Depth for 
Feedforward Neural Networks”, COLT, 2016

The width of 3-layer network is K. 

The width of 2-layer network 

should be 𝐴𝑒𝐵𝐾
4/19

. 



More Theories 

• A function expressible by a deep feedforward network 
cannot be approximated by a shallow network.

• Unless the width of the shallow network is VERY large

• Applied on activation functions beyond relu

Matus Telgarsky, “Benefits of depth in neural networks”, COLT, 2016

Deep Network:

Shallow Network:

Θ 𝑘3 layers, Θ 1 nodes per layer, Θ 1 distinct 
parameters 

Θ 𝑘 layers Ω 2𝑘 nodes



10

Itay Safran, Ohad Shamir, “Depth-Width 
Tradeoffs in Approximating Natural Functions 
with Neural Networks”, ICML, 2017



More Theories 

If a function f has “certain degree of complexity”

Approximating f to accuracy 𝜀 in the L2 norm using a 
fixed depth ReLU network requires at least 𝑝𝑜𝑙𝑦 1/𝜀

There exist a ReLU network of depth and width at most 

𝑝𝑜𝑙𝑦 𝑙𝑜𝑔 1/𝜀 that can achieve the approximation. 

Dmitry Yarotsky, “Error bounds for approximations with deep ReLU networks”, 
arXiv, 2016
Dmitry Yarotsky, “Optimal approximation of continuous functions by very deep 
ReLU networks”, arXiv 2018
Shiyu Liang, R. Srikant, “Why Deep Neural Networks for Function 
Approximation?”, ICLR, 2017
Itay Safran, Ohad Shamir, “Depth-Width Tradeoffs in Approximating Natural 
Functions with Neural Networks”, ICML, 2017



The Nature of Functions

Hrushikesh Mhaskar, Qianli Liao, Tomaso Poggio, When and Why 
Are Deep Networks Better Than Shallow Ones?, AAAI, 2017



Concluding Remarks


