Generalization Ability

We use very large network today

Source of image: https://www.youtube.com/watch?v=kCj51pTQPKI

機器學習基石 https://youtu.be/XxPB9GIJEUk

Generalization Gap

No matter the data distribution With probability $1 - \delta$

$$E_{train} \leq E_{test} \leq E_{train} + \Omega(R, M, \delta)$$

Smaller δ , larger Ω

 \blacksquare Larger R, smaller Ω R is the number of training data M is the "capacity" of your model \longrightarrow Larger M, larger Ω ("size" of the function set)

How to measure the "capacity"?

VC dimension (d_{VC})

Given 3 data points

Model M can always achieve 0% error rate

(亂教 Model M 都學得會)

VC dimension (d_{VC}) of Model M \geq 3

e.g. linear model

Random label (故意亂教)

There are some cases linear model can not learn.

VC dimension (d_{VC}) of Linear Model < 4

Given 4 data points

(來亂的,所以學不會)

What is the capacity of deep models?

Inception model on the CIFAR10

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals, "Understanding deep learning requires rethinking generalization", ICLR 2017

Demo

https://arxiv.org/abs/1706.08947

https://arxiv.org/pdf/1412.6614.pdf

Training data size: 50000

https://arxiv.org/abs/1801.00173

https://arxiv.org/pdf/1802.08760.pdf

https://arxiv.org/abs/1605.07678

Network regularizes itself?

https://arxiv.org/pdf/1706.10239.pdf

Concluding Remarks

- The capacity of deep model is large.
- However, it does not overfit!
- The reason is not clear yet.