Tips for Deep Learning
Recipe of Deep Learning

Step 1: define a set of function
Step 2: goodness of function
Step 3: pick the best function

Overfitting!

Good Results on Testing Data?

Good Results on Training Data?
Do not always blame Overfitting

Deep Residual Learning for Image Recognition
http://arxiv.org/abs/1512.03385
Recipe of Deep Learning

Different approaches for different problems.

- e.g. dropout for good results on testing data
Recipe of Deep Learning

- Early Stopping
- Regularization
- Dropout
- New activation function
- Adaptive Learning Rate

Good Results on Testing Data?
- YES

Good Results on Training Data?
- YES
Hard to get the power of Deep ...

Deeper usually does not imply better.

Results on Training Data
Vanishing Gradient Problem

- Smaller gradients
 - Learn very slow
 - Almost random

- Larger gradients
 - Learn very fast
 - Already converge

Based on random!?
Vanishing Gradient Problem

Intuitive way to compute the derivatives ...

\[\frac{\partial C}{\partial w} = \frac{\Delta C}{\Delta w} \]
ReLU

• Rectified Linear Unit (ReLU)

\[\sigma(z) \]

Reason:

1. Fast to compute
2. Biological reason
3. Infinite sigmoid with different biases
4. Vanishing gradient problem

[Xavier Glorot, AISTATS’11]
[Andrew L. Maas, ICML’13]
[Kaiming He, arXiv’15]
ReLU
ReLU

A Thinner linear network

Do not have smaller gradients
ReLU - variant

Leaky ReLU

\[a = 0.01z \]

Parametric ReLU

\[a = \alpha z \]

\(\alpha \) also learned by gradient descent
Maxout

• Learnable activation function [Ian J. Goodfellow, ICML’13]

ReLU is a special case of Maxout.

You can have more than 2 elements in a group.
Maxout

ReLU is a special case of Maxout

\[x \xrightarrow{w, b} z \xrightarrow{\text{ReLU}} a \]

Input

\[x \]

\[1 \]

\[z = wx + b \]

\[a \]

\[x \]

\[+ \]

\[z_1 \]

\[z_2 \]

\[w \]

\[0 \]

\[b \]

\[0 \]

\[0 \]

\[\text{Max} \]

\[a \]

\[max\{z_1, z_2\} \]

\[x \]

\[z_1 = wx + b \]

\[z_2 = 0 \]
Maxout

More than ReLU

Learnable Activation Function

$z = wx + b$

$z_1 = wx + b$

$z_2 = w'x + b'$
Maxout

- Learnable activation function [Ian J. Goodfellow, ICML’13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

2 elements in a group
3 elements in a group
Maxout - Training

- Given a training data x, we know which z would be the max

$$
\begin{align*}
\text{Input} & \quad \rightarrow \quad z_1^1 \quad \rightarrow \quad z_2^1 \quad \rightarrow \quad \max\{z_1^1, z_2^1\} \\
\quad & \quad \rightarrow \quad z_3^1 \quad \rightarrow \quad z_4^1 \\
\text{x} & \quad \rightarrow \quad + \quad \rightarrow \quad + \quad \rightarrow \quad + \quad \rightarrow \quad + \\
\end{align*}
$$

$$
\begin{align*}
& \quad \rightarrow \quad a_1^1 \quad \rightarrow \quad a_2^1 \\
& \quad \rightarrow \quad a_1^2 \quad \rightarrow \quad a_2^2 \\
\end{align*}
$$
Maxout - Training

- Given a training data x, we know which z would be the max

- Train this thin and linear network

Different thin and linear network for different examples
Recipe of Deep Learning

- Early Stopping
- Regularization
- Dropout
- New activation function
- Adaptive Learning Rate

Good Results on Testing Data?

YES

Good Results on Training Data?

YES
Review

Adagrad

\[w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^{t} (g^i)^2}} g^t \]

Use first derivative to estimate second derivative
RMSProp

Error Surface can be very complex when training NN.

- Smaller Learning Rate
- Larger Learning Rate
RMSProp

\[w^1 \leftarrow w^0 - \frac{\eta}{\sigma^0} g^0 \quad \sigma^0 = g^0 \]

\[w^2 \leftarrow w^1 - \frac{\eta}{\sigma^1} g^1 \quad \sigma^1 = \sqrt{\alpha (\sigma^0)^2 + (1 - \alpha)(g^1)^2} \]

\[w^3 \leftarrow w^2 - \frac{\eta}{\sigma^2} g^2 \quad \sigma^2 = \sqrt{\alpha (\sigma^1)^2 + (1 - \alpha)(g^2)^2} \]

\[\vdots \]

\[w^{t+1} \leftarrow w^t - \frac{\eta}{\sigma^t} g^t \quad \sigma^t = \sqrt{\alpha (\sigma^{t-1})^2 + (1 - \alpha)(g^t)^2} \]

Root Mean Square of the gradients with previous gradients being decayed.
Hard to find optimal network parameters

The value of a network parameter w

Very slow at the plateau

$\frac{\partial L}{\partial w} \approx 0$

Stuck at saddle point

$\frac{\partial L}{\partial w} = 0$

Stuck at local minima

$\frac{\partial L}{\partial w} = 0$
In physical world

• Momentum

How about put this phenomenon in gradient descent?
Review: Vanilla Gradient Descent

Start at position θ^0

Compute gradient at θ^0

Move to $\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$

Compute gradient at θ^1

Move to $\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$

...

Stop until $\nabla L(\theta^t) \approx 0$
Momentum

Start at point θ^0
Movement $v^0=0$
Compute gradient at θ^0
Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$
Move to $\theta^1 = \theta^0 + v^1$
Compute gradient at θ^1
Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$
Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on gradient, but previous movement.
Momentum

Movement: movement of last step minus gradient at present

\(v^i \) is actually the weighted sum of all the previous gradient:
\(\nabla L(\theta^0), \nabla L(\theta^1), \ldots \nabla L(\theta^{i-1}) \)

\(v^0 = 0 \)

\(v^1 = -\eta \nabla L(\theta^0) \)

\(v^2 = -\lambda \eta \nabla L(\theta^0) - \eta \nabla L(\theta^1) \)

\cdots

Start at point \(\theta^0 \)
Movement \(v^0 = 0 \)
Compute gradient at \(\theta^0 \)
Movement \(v^1 = \lambda v^0 - \eta \nabla L(\theta^0) \)
Move to \(\theta^1 = \theta^0 + v^1 \)
Compute gradient at \(\theta^1 \)
Movement \(v^2 = \lambda v^1 - \eta \nabla L(\theta^1) \)
Move to \(\theta^2 = \theta^1 + v^2 \)

Movement not just based on gradient, but previous movement
Movement = Negative of $\frac{\partial L}{\partial w}$ + Momentum

$\frac{\partial L}{\partial w} = 0$

Still not guarantee reaching global minima, but give some hope
Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α: Step size
Require: $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates
Require: $f(\theta)$: Stochastic objective function with parameters θ
Require: θ_0: Initial parameter vector

$m_0 \leftarrow 0$ (Initialize 1st moment vector)
$v_0 \leftarrow 0$ (Initialize 2nd moment vector)
t \leftarrow 0$ (Initialize timestep)

while θ_t not converged do
 \begin{align*}
 t &\leftarrow t + 1 \\
 g_t &\leftarrow \nabla_\theta f_t(\theta_{t-1}) \text{ (Get gradients w.r.t. stochastic objective at timestep t)} \\
 m_t &\leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t \text{ (Update biased first moment estimate)} \\
 v_t &\leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \text{ (Update biased second raw moment estimate)} \\
 \hat{m}_t &\leftarrow m_t/(1 - \beta_1^t) \text{ (Compute bias-corrected first moment estimate)} \\
 \hat{v}_t &\leftarrow v_t/(1 - \beta_2^t) \text{ (Compute bias-corrected second raw moment estimate)} \\
 \theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t/(\sqrt{\hat{v}_t} + \epsilon) \text{ (Update parameters)}
 \end{align*}
end while

return θ_t (Resulting parameters)
Recipe of Deep Learning

- Early Stopping
- Regularization
- Dropout
- New activation function
- Adaptive Learning Rate

1. Good Results on Training Data?
 - YES
 - Good Results on Testing Data?
 - YES
Early Stopping

Keras: http://keras.io/getting-started/faq/#how-can-i-interrupt-training-when-the-validation-loss-isnt-decreasing-anymore
Recipe of Deep Learning

- Early Stopping
- Regularization
- Dropout
- New activation function
- Adaptive Learning Rate

Good Results on Training Data?

Good Results on Testing Data?
Regularization

• New loss function to be minimized

 • Find a set of weight not only minimizing original cost but also close to zero

\[
L' (\theta) = L(\theta) + \lambda \frac{1}{2} \| \theta \|_2^2 \quad \rightarrow \quad \text{Regularization term}
\]

Original loss
(e.g. minimize square error, cross entropy ...)

\[
\theta = \{w_1, w_2, \ldots \}
\]

L2 regularization:
\[
\| \theta \|_2^2 = (w_1)^2 + (w_2)^2 + \ldots
\]
(usually not consider biases)
Regularization

\[\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \ldots \]

- New loss function to be minimized

\[L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_2 \]

Gradient:

\[\frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda w \]

Update:

\[w^{t+1} \rightarrow w^t - \eta \frac{\partial L'}{\partial w} = w^t - \eta \left(\frac{\partial L}{\partial w} + \lambda w^t \right) \]

\[= (1 - \eta \lambda)w^t - \eta \frac{\partial L}{\partial w} \]

Weight Decay

Closer to zero
Regularization

\[\|\theta\|_1 = |w_1| + |w_2| + \ldots \]

• New loss function to be minimized

\[L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_1 \quad \frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda \text{sgn}(w) \]

Update:

\[w^{t+1} \rightarrow w^t - \eta \frac{\partial L'}{\partial w} = w^t - \eta \left(\frac{\partial L}{\partial w} + \lambda \text{sgn}(w^t) \right) \]

\[= w^t - \eta \frac{\partial L}{\partial w} - \eta \lambda \text{sgn}(w^t) \quad \text{Always delete} \]

\[= (1 - \eta \lambda)w^t - \eta \frac{\partial L}{\partial w} \quad \ldots \quad \text{L2} \]
Regularization - Weight Decay

- Our brain prunes out the useless link between neurons.

Doing the same thing to machine’s brain improves the performance.
Recipe of Deep Learning

- Early Stopping
- Regularization
- Dropout
- New activation function
- Adaptive Learning Rate

Good Results on Training Data?
YES

Good Results on Testing Data?
YES
 Dropout

Training:

- Each time before updating the parameters
 - Each neuron has p% to dropout
Training:

- Each time before updating the parameters
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons
Testing:

- No dropout

- If the dropout rate at training is $p\%$, all the weights times $1-p\%$

- Assume that the dropout rate is 50%. If a weight $w = 1$ by training, set $w = 0.5$ for testing.
Dropout
- Intuitive Reason

Training
Dropout (腳上綁重物)

Testing
No dropout
(拿下重物後就變很強)
Dropout - Intuitive Reason

- When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.
Dropout - Intuitive Reason

- Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout
Assume dropout rate is 50%

Testing of Dropout
No dropout

Weights from training

\[z' \approx 2z \]

Weights multiply 1-p%
Dropout is a kind of ensemble.

Ensemble

Train a bunch of networks with different structures
Dropout is a kind of ensemble.

Ensemble

Testing data x

- Network 1
- Network 2
- Network 3
- Network 4

y_1, y_2, y_3, y_4

average
Dropout is a kind of ensemble.

- Using one mini-batch to train one network
- Some parameters in the network are shared

Training of Dropout

\[M \text{ neurons} \]

\[2^M \text{ possible networks} \]
Dropout is a kind of ensemble.

Testing of Dropout

All the weights multiply $1-p\%$

$$\approx$$

y
Testing of Dropout

\[z = w_1 x_1 + w_2 x_2 \]

\[z = w_2 x_2 \]

\[z = w_1 x_1 \]

\[z = 0 \]

\[z = \frac{1}{2} w_1 x_1 + \frac{1}{2} w_2 x_2 \]
Recipe of Deep Learning

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

Overfitting!

Good Results on Training Data?

Good Results on Testing Data?