Gradient Descent



Review: Gradient Descent

* |In step 3, we have to solve the following optimization
problem:

0" = arg mein L(@) L:lossfunction 6O:parameters

Suppose that 8 has two variables {8,, 6,}
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Review: Gradient Descent

Gradient: Loss HY<F = 4R EV A4R T[]
Start at position 6°
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Compute gradient at 8
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Gradient Descent
Tip 1: Tuning your
learning rates



9 =i —77VL((9H)

Set the learning rate n carefully

Learning Rate

If there are more than three
parameters, you cannot
visualize this.

Loss

Loss Just make

No. of parameters updates

But you can always visualize this.



Adaptive Learning Rates

* Popular & Simple Idea: Reduce the learning rate by
some factor every few epochs.

* At the beginning, we are far from the destination, so we
use larger learning rate

* After several epochs, we are close to the destination, so
we reduce the learning rate

e E.g. 1/tdecay:nt =n/vt+1
* Learning rate cannot be one-size-fits-all

* Giving different parameters different learning
rates
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 Divide the learning rate of each parameter by the
root mean square of its previous derivatives

Vanilla Gradient descent

ARSI/ LIl W is one parameters

Adagrad

at: root mean square of
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Adagrad

 Divide the learning rate of each parameter by the
root mean square of its previous derivatives
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Vanilla Gradient descent

wttl « wt — ptgt

Larger gradient,
larger step
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Larger gradient,
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Larger gradient, larger steps?

\\ ‘| Best step:
. b

|12axy + b|

Larger 1t order %o + 5 |
derivative means far le
from the minima \ .

y = ax?+ bx +c

2a

dx

= |2ax + b|



er 1st order

Comparison between
different parameters

Do not cross parameters
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Second Derivative

Best step:
X + ) |2axy + b|
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— = 20 The best step is
0x Second derivative



oer 15t order

Comparison between | gervstvemmeans far
different parameters

| First derivative|

Do not cross parameters

The best step is

Second derivative a>b
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The best step is
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Gradient Descent

Tip 2: Stochastic
Gradient Descent

Make the training faster



Stochastic Gradient Descent

2
I = z 97— b + z Wil Loss is thg §ummat|on over
- all training examples

€ Gradient Descent 0' = 0'" —nVv L(Hi—l)

@ Stochastic Gradient Descent

Pick an example x"

2
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* Demo



Stochastic Gradient Descent

Gradient Descent

Update after seeing all
examples

See all
examples

Stochastic Gradient Descent

Update for each example

If there are 20 examples,
20 times faster.

= See only one |
s example




Gradient Descent
Tip 3: Feature Scaling



Source of figure:

Feat ure Sca ‘ | N g http://cs231n.github.io/neural-

networks-2/

Yy = b +W1x1 +W2X2

10 10

Make different features have the same scaling



Feature Scaling
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Feature Scaling

X X X X X"
x11 X12 For each
Xy | dimension i:
| e || mean:my
standard

deviation: g;

r Xi —M; The means of all dimensions are 0,
y o; and the variances are all 1




Gradient Descent
Theory



Question

* When solving:

0" = arg m@in L(6) by gradient descent

* Each time we update the parameters, we obtain 6
that makes L(8) smaller.

L(6°) > L(8Y) > L(6?) > -

Is this statement correct?



Warning of Math



Formal Derivation

* Suppose that 8 has two variables {6,, 6,} ;(,e)
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92 0.0

Given a point, we can \ |
easily find the point  ™°° MO =

1 \
with the smallest value F——"—
nearby. How? e

-1.0
-1.0



Taylor Series

 Taylor series: Let h(x) be any function infinitely
differentiable around x = x,.

h(X):ki; % (x—x, )
= h(xo)Jr h’(xo )(X— XO)+ h”(XO)(X— X, )2 +

When x is close to x, [> h(x)= h(x,)+h"(x, (X=X, )



E.g. Taylor series for h(x)=sin(x) around X0=T[/4
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Multivariable Taylor Series

h(x9) =t g )+ ) B0y

+ something related to (x-x,)? and (y-yg)? + ......

When x and y is close to x,and y,

$
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Back to Formal Derivation

Based on Taylor Series:
If the red circle is small enough, in the red circle

L(0)~L(ab)s @D 5 oy, L@b) )

00, 00,
s=L(a,b) o
U= oL(a,b) o oL(a,b)
00, 00, X
~s+u(@,—a)+v(6, -b)




Back to Formal Derivation

Based on Taylor Series: constant

If the red circle is small enough, in the red circle S = L(a, b)

et pmn "
Find 6, and 6, in the red circle

minimizing L) | e

(6,—a) +(6,-b) <d® =

62 0.0
Simple, right?




Gradient descent — two variables

Red Circle: (If the radius is small)

L(6)~S¢ulg,—a)+v(e,b)

minimizing

(6,—a) +(6,-b) <d?
A6,

To minimize L(O)

A6,

L(B)

A6,
A6,

A6,

Find 6, and 6, in the red circle

A6,

(A#




Back to Formal Derivation

Based on Taylor Series: constant

If the red circle is small enough, in the red circle S = L(a, b)
L(0)~s+u(6,—a)+v(¢,-b) ,_dL(ab) _aL(ab)

00, 00,
Find 8, and 6, yielding the smallest value of L(8) in the circle
o oL(a,b)
0, _ a 7 u _ a 7 06, This is gradient
0, b V b GL(a, b) descent.
00,

Not satisfied if the red circle (Iearni_ng rate) is not small enough

You can consider the second order term, e.g. Newton’s method.



End of Warning



More Limitation
of Gradient Descent

Loss Very slow at

the plateau

Stuck at
saddle point §
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The value of the parameter w
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