Unsupervised Learning:
Word Embedding
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Word Embedding

* Machine learn the meaning of words from reading
a lot of documents without supervision
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Word Embedding How about

auto-encoder?

* Generating Word Vector is unsupervised

Apple

Training data is a lot of text
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Word Embedding

* Machine learn the meaning of words from reading
a lot of documents without supervision

A word can be understood by its context
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You shall know a word
by the company it keeps




How to exploit the context?

e Count based

* If two words w; and w; frequently co-occur, V(w;) and
V(w;) would be close to each other

* E.g. Glove Vector:
http://nlp.stanford.edu/projects/glove/

Viw).V(w) (— N,

Inner product

* Perdition based

Number of times w; and w;

in the same document


http://nlp.stanford.edu/projects/glove/
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Prediction-based
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Prediction-based
— Sharing Parameters
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Prediction-based
— Sharing Parameters
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Prediction-based
— Sharing Parameters
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Prediction-based — Training
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Prediction-based
— Various Architectures

e Continuous bag of word (CBOW) model

Wii —

VYA N |
+1 eura
' — > W

Network !
\/\/ w,, — Networ

predicting the word given its context

e Skip-gram
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Word Embedding
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Word Embedding
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Fu, Ruiji, et al. "Learning semantic hierarchies via word embeddings."Proceedings of
the 52th Annual Meeting of the Association for Computational Linguistics: Long

Papers. Vol. 1. 2014.
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Word Embedding

V(Germany)

e Characteristics ~ VV(Berlin) — V(Rome) + V(Italy)

V(hotter) — V(hot) = V(bigger) — V(big)
V(Rome) — V(Italy) = V(Berlin) — V(Germany)
V(king) — V(queen) = V(uncle) — V(aunt)

* Solving analogies

Rome : Italy = Berlin : ?

Compute V(Berlin) — V(Rome) + V(Italy)
Find the word w with the closest V(w)




Demo

* Model used in demo is provided by [ {[]]{=
* Part of the project done by [F{II{&E ~ MRE (&
* TA: Z7T#
* Training data is from PTT (collected by =)



Multi-lingual Embedding
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Bilingual Word Embeddings for Phrase-Based Machine Translation, Will Zou,
Richard Socher, Daniel Cer and Christopher Manning, EMNLP, 2013




Multi-domain Embedding

Richard Socher, Milind Ganjoo, Hamsa Sridhar, Osbert Bastani, Christopher D.
Manning, Andrew Y. Ng, Zero-Shot Learning Through Cross-Modal Transfer, NIPS,
2013




Document Embedding

* word sequences with different lengths - the
vector with the same length

* The vector representing the meaning of the word
seguence

* A word sequence can be a document or a paragraph

L P
-
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word sequence
(a document or paragraph)



Semantic Embedding
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Reference: Hinton, Geoffrey E., and Ruslan R.
Salakhutdinov. "Reducing the dimensionality of
data with neural networks." Science 313.5786
(2006): 504-507



Beyond Bag of Word

* To understand the meaning of a word sequence,
the order of the words can not be ighored.

white blood cells destroying an infection positive

J b -

exactly the same bag-of-word d|ffer§nt
meaning

-
an infection destroying white blood cells » negative



Beyond Bag of Word

Paragraph Vector: Le, Quoc, and Tomas Mikolov. "Distributed Representations of
Sentences and Documents.” ICML, 2014

Seqg2seq Auto-encoder: Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A
hierarchical neural autoencoder for paragraphs and documents." arXiv preprint,
2015

Skip Thought: Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S.
Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler, “Skip-Thought Vectors”
arXiv preprint, 2015.

Exploiting other kind of labels:

* Huang, Po-Sen, et al. "Learning deep structured semantic models for web
search using clickthrough data." ACM, 2013.

* Shen, Yelong, et al. "A latent semantic model with convolutional-pooling
structure for information retrieval." ACM, 2014.

* Socher, Richard, et al. "Recursive deep models for semantic
compositionality over a sentiment treebank." EMNLP, 2013.

* Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. "Improved
semantic representations from tree-structured long short-term memory
networks." arXiv preprint, 2015.



