Where does the error come from?
A more complex model does not always lead to better performance on testing data.
Estimator

\[\hat{y} = \hat{f}(x) \]

Only Niantic knows \(\hat{f} \)

From training data, we find \(f^* \)

\(f^* \) is an estimator of \(\hat{f} \)
Bias and Variance of Estimator

• Estimate the mean of a variable x
 • assume the mean of x is μ
 • assume the variance of x is σ^2
• Estimator of mean μ
 • Sample N points: $\{x^1, x^2, ..., x^N\}$

\[
m = \frac{1}{N} \sum_{n} x^n \neq \mu
\]

\[
E[m] = E\left[\frac{1}{N} \sum_{n} x^n \right] = \frac{1}{N} \sum_{n} E[x^n] = \mu
\]
Bias and Variance of Estimator

• Estimate the mean of a variable x
 • assume the mean of x is μ
 • assume the variance of x is σ^2
• Estimator of mean μ
 • Sample N points: $\{x^1, x^2, ..., x^N\}$

\[m = \frac{1}{N} \sum_{n} x^n \neq \mu \]

\[Var[m] = \frac{\sigma^2}{N} \]

Variance depends on the number of samples
Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of variance σ^2
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_n x^n \quad s = \frac{1}{N} \sum_n (x^n - m)^2$$

Biased estimator

$$E[s] = \frac{N - 1}{N} \sigma^2 \neq \sigma^2$$
\[E[f^*] = \bar{f} \]
Parallel Universes

- In all the universes, we are collecting (catching) 10 Pokémons as training data to find f^*
Parallel Universes

- In different universes, we use the same model, but obtain different f^*
f^* in 100 Universes

$y = b + w \cdot x_{cp}$

$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4 + w_5 \cdot (x_{cp})^5$
Variance

\[y = b + w \cdot x_{cp} \]

Consider the extreme case \(f(x) = 5 \)

Simpler model is less influenced by the sampled data

Large Variance

Small Variance
Bias

\[E[f^*] = \bar{f} \]

- Bias: If we average all the \(f^* \), is it close to \(\hat{f} \)?
Black curve: the true function \hat{f}
Red curves: $5000 \, f^*$
Blue curve: the average of $5000 \, f^*$

$$= \bar{f}$$
Bias

\[y = b + w \cdot x_{cp} \]

\[y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4 + w_5 \cdot (x_{cp})^5 \]
Bias v.s. Variance

- Large Bias
- Small Bias
- Large Variance
- Small Variance

Error from bias
Error from variance
Error observed

Overfitting
Underfitting

Large Bias → Small Bias
Small Variance → Large Variance
What to do with large bias?

• Diagnosis:
 • If your model cannot even fit the training examples, then you have large bias.
 • If you can fit the training data, but large error on testing data, then you probably have large variance.
 • For bias, redesign your model:
 • Add more features as input
 • A more complex model
What to do with large variance?

- More data
 - Very effective, but not always practical
- Regularization
 - May increase bias
Model Selection

• There is usually a trade-off between bias and variance.
• Select a model that balances two kinds of error to minimize total error
• What you should NOT do:

<table>
<thead>
<tr>
<th>Training Set</th>
<th>Model 1</th>
<th>Err = 0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 2</td>
<td>Err = 0.7</td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td>Err = 0.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing Set</th>
<th>Real Testing Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Err > 0.5</td>
<td>(not in hand)</td>
</tr>
</tbody>
</table>
Homework

![Diagram of training and testing sets with models and error rates]

- **Model 1**: Err = 0.9
- **Model 2**: Err = 0.7
- **Model 3**: Err = 0.5

What will happen?

- I beat baseline!
- No, you don’t

http://www.chioka.in/how-to-select-your-final-models-in-a-kaggle-competition/
Cross Validation

Training Set

Training Set

Validation set

Model 1 \(\text{Err} = 0.9 \)
Model 2 \(\text{Err} = 0.7 \)
Model 3 \(\text{Err} = 0.5 \)

Using the results of public testing data to tune your model
You are making public set better than private set.

Not recommend

Err > 0.5 \(\rightarrow \) Err > 0.5
N-fold Cross Validation

- Training Set
 - Train
 - Val

- Testing Set
 - public
 - private

- Model 1
 - Err = 0.2
 - Err = 0.4
 - Avg Err = 0.3

- Model 2
 - Err = 0.4
 - Err = 0.5
 - Avg Err = 0.5

- Model 3
 - Err = 0.4
 - Err = 0.6
 - Avg Err = 0.4
Reference

• Bishop: Chapter 3.2