Tips for Deep Learning
Recipe of Deep Learning

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

Good Results on Testing Data?

Overfitting!

Good Results on Training Data?
Do not always blame Overfitting

Deep Residual Learning for Image Recognition
http://arxiv.org/abs/1512.03385
Recipe of Deep Learning

Different approaches for different problems.

e.g. dropout for good results on testing data

Neural Network

Good Results on Testing Data?

YES

Good Results on Training Data?

YES
Recipe of Deep Learning

- Early Stopping
- Regularization
- Dropout
- New activation function
- Adaptive Learning Rate

Good Results on Training Data?
- YES

Good Results on Testing Data?
- YES
Hard to get the power of Deep ...

Results on Training Data

Deeper usually does not imply better.
Vanishing Gradient Problem

Larger gradients

Smaller gradients

Larger gradients

Almost random

Learn very slow

Learn very fast

Already converge

based on random!?
Vanishing Gradient Problem

Intuitive way to compute the derivatives ...

$$\frac{\partial l}{\partial w} =? \frac{\Delta l}{\Delta w}$$
ReLU

- Rectified Linear Unit (ReLU)

Reason:
1. Fast to compute
2. Biological reason
3. Infinite sigmoid with different biases
4. Vanishing gradient problem

\[a = 0 \quad a = z \]

[Xavier Glorot, AISTATS’11]
[Andrew L. Maas, ICML’13]
[Kaiming He, arXiv’15]
ReLU
ReLU

A Thinner linear network

Do not have smaller gradients
ReLU - variant

Leaky ReLU

\[a = 0.01z \]

\[a = z \]

Parametric ReLU

\[a = \alpha z \]

\[a = z \]

\(\alpha \) also learned by gradient descent
Maxout

Learnable activation function [Ian J. Goodfellow, ICML’13]

ReLU is a special case of Maxout

You can have more than 2 elements in a group.
Maxout

ReLU is a special case of Maxout

Input x

ReLU

$z = wx + b$

Output a

Max

$max\{z_1, z_2\}$

Diagram:}

ReLU is a special case of Maxout

Input x

ReLU

$z = wx + b$

Output a

Max

$max\{z_1, z_2\}$
Maxout

\[x = \begin{array}{c}
 x \\
 1
\end{array} \]

ReLU

\[w \]

\[z = wx + b \]

Learnable Activation Function

\[z_1 = wx + b \]

\[z_2 = w'x + b' \]

More than ReLU

\[x = \begin{array}{c}
 x \\
 1
\end{array} \]

\[w \]

\[b \]

\[w' \]

\[b' \]

\[z_1 = \max\{z_1, z_2\} \]
Maxout

- Learnable activation function [Ian J. Goodfellow, ICML’13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

2 elements in a group

3 elements in a group
Maxout - Training

- Given a training data x, we know which z would be the max.
Maxout - Training

• Given a training data x, we know which z would be the max

• Train this thin and linear network

Different thin and linear network for different examples
Recipe of Deep Learning

- Early Stopping
- Regularization
- Dropout
- New activation function
- Adaptive Learning Rate

Good Results on Testing Data?

- YES

Good Results on Training Data?

- YES
Adagrad

\[w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^{t} (g^i)^2}} g^t \]

Use first derivative to estimate second derivative.
RMSProp

Error Surface can be very complex when training NN.

Smaller Learning Rate

Larger Learning Rate
RMSProp

\[w^1 \leftarrow w^0 - \frac{\eta}{\sigma^0} g^0 \quad \sigma^0 = g^0 \]

\[w^2 \leftarrow w^1 - \frac{\eta}{\sigma^1} g^1 \quad \sigma^1 = \sqrt{\alpha (\sigma^0)^2 + (1 - \alpha) (g^1)^2} \]

\[w^3 \leftarrow w^2 - \frac{\eta}{\sigma^2} g^2 \quad \sigma^2 = \sqrt{\alpha (\sigma^1)^2 + (1 - \alpha) (g^2)^2} \]

\[\vdots \]

\[w^{t+1} \leftarrow w^t - \frac{\eta}{\sigma^t} g^t \quad \sigma^t = \sqrt{\alpha (\sigma^{t-1})^2 + (1 - \alpha) (g^t)^2} \]

Root Mean Square of the gradients with previous gradients being decayed
Hard to find optimal network parameters

The value of a network parameter w

- Very slow at the plateau
 - $\frac{\partial L}{\partial w} \approx 0$
- Stuck at saddle point
 - $\frac{\partial L}{\partial w} = 0$
- Stuck at local minima
 - $\frac{\partial L}{\partial w} = 0$
In physical world

• Momentum

How about put this phenomenon in gradient descent?
Review: Vanilla Gradient Descent

Start at position θ^0

Compute gradient at θ^0

Move to $\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$

Compute gradient at θ^1

Move to $\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$

...$

Stop until $\nabla L(\theta^t) \approx 0$
Momentum

Start at point θ^0
Movement $v^0=0$
Compute gradient at θ^0
Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$
Move to $\theta^1 = \theta^0 + v^1$
Compute gradient at θ^1
Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$
Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on gradient, but previous movement.
Momentum

Movement: movement of last step minus gradient at present

\(v^i \) is actually the weighted sum of all the previous gradient:

\[\nabla L(\theta^0), \nabla L(\theta^1), \ldots \nabla L(\theta^{i-1}) \]

\[v^0 = 0 \]

\[v^1 = -\eta \nabla L(\theta^0) \]

\[v^2 = -\lambda \eta \nabla L(\theta^0) - \eta \nabla L(\theta^1) \]

\[\vdots \]

Start at point \(\theta^0 \)

Movement \(v^0 = 0 \)

Compute gradient at \(\theta^0 \)

Movement \(v^1 = \lambda v^0 - \eta \nabla L(\theta^0) \)

Move to \(\theta^1 = \theta^0 + v^1 \)

Compute gradient at \(\theta^1 \)

Movement \(v^2 = \lambda v^1 - \eta \nabla L(\theta^1) \)

Move to \(\theta^2 = \theta^1 + v^2 \)

Movement not just based on gradient, but previous movement
Movement = Negative of $\frac{\partial L}{\partial w}$ + Momentum

Still not guarantee reaching global minima, but give some hope
Adam

RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α: Stepsize
Require: $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates
Require: $f(\theta)$: Stochastic objective function with parameters θ
Require: θ_0: Initial parameter vector

$m_0 \leftarrow 0$ (Initialize 1st moment vector)
$v_0 \leftarrow 0$ (Initialize 2nd moment vector)
$t \leftarrow 0$ (Initialize timestep)

while θ_t not converged do
 $t \leftarrow t + 1$
 $g_t \leftarrow \nabla_\theta f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t)
 $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate)
 $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate)
 $\hat{m}_t \leftarrow m_t / (1 - \beta_1^t)$ (Compute bias-corrected first moment estimate)
 $\hat{v}_t \leftarrow v_t / (1 - \beta_2^t)$ (Compute bias-corrected second raw moment estimate)
 $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$ (Update parameters)
end while

return θ_t (Resulting parameters)
Recipe of Deep Learning

- Early Stopping
- Regularization
- Dropout
- New activation function
- Adaptive Learning Rate

Good Results on Training Data?

Good Results on Testing Data?

YES

YES
Early Stopping

Keras: http://keras.io/getting-started/faq/#how-can-i-interrupt-training-when-the-validation-loss-isnt-decreasing-anymore
Recipe of Deep Learning

- Early Stopping
- Regularization
- Dropout
- New activation function
- Adaptive Learning Rate

Good Results on Training Data? YES

Good Results on Testing Data? YES

Smiley face
Regularization

• New loss function to be minimized
 • Find a set of weight not only minimizing original cost but also close to zero

\[L'(\theta) = L(\theta) + \lambda \frac{1}{2} \lVert \theta \rVert_2 \]

→ Regularization term

\[\theta = \{w_1, w_2, \ldots\} \]

Original loss
(e.g. minimize square error, cross entropy ...)

L2 regularization:
\[\lVert \theta \rVert_2 = (w_1)^2 + (w_2)^2 + \ldots \]

(usually not consider biases)
Regularization

\[\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \ldots \]

- New loss function to be minimized

\[L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_2 \]

Gradient:

\[\frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda w \]

Update:

\[w^{t+1} \rightarrow w^t - \eta \frac{\partial L'}{\partial w} = w^t - \eta \left(\frac{\partial L}{\partial w} + \lambda w^t \right) \]

\[= (1 - \eta \lambda)w^t - \eta \frac{\partial L}{\partial w} \]

Weight Decay

Closer to zero
Regularization

\[\| \theta \|_1 = |w_1| + |w_2| + \ldots \]

- New loss function to be minimized

\[
L'(\theta) = L(\theta) + \lambda \frac{1}{2} \| \theta \|_1 \\
\frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda \text{sgn}(w)
\]

Update:

\[
w^{t+1} \to w^t - \eta \frac{\partial L'}{\partial w} = w^t - \eta \left(\frac{\partial L}{\partial w} + \lambda \text{sgn}(w^t) \right)
\]

\[
= w^t - \eta \frac{\partial L}{\partial w} - \eta \lambda \text{sgn}(w^t) \quad \text{Always delete}
\]

\[
= (1 - \eta \lambda)w^t - \eta \frac{\partial L}{\partial w} \quad \text{...... L2}
\]
Regularization - Weight Decay

- Our brain prunes out the useless link between neurons.

Doing the same thing to machine’s brain improves the performance.
Recipe of Deep Learning

- Early Stopping
- Regularization
- Dropout
- New activation function
- Adaptive Learning Rate

Good Results on
Testing Data?

YES

Good Results on
Training Data?

YES
Dropout

Training:

➢ Each time before updating the parameters
 ● Each neuron has p% to dropout
Dropout

Training:

- Each time before updating the parameters:
 - Each neuron has p% to dropout

 The structure of the network is changed.

- Using the new network for training

For each mini-batch, we resample the dropout neurons.
Dropout

Testing:

➢ No dropout

● If the dropout rate at training is p%, all the weights times 1-p%

● Assume that the dropout rate is 50%. If a weight $w = 1$ by training, set $w = 0.5$ for testing.
Dropout - Intuitive Reason

Training
Dropout (腳上綁重物)

Testing
No dropout
(拿下重物後就變很強)
Dropout - Intuitive Reason

- When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.
Dropout - Intuitive Reason

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout
Assume dropout rate is 50%

Testing of Dropout
No dropout

Weights from training

\[z' \approx 2z \]

Weights multiply 1-p%

\[z' \approx z \]
Dropout is a kind of ensemble.

Ensemble

Train a bunch of networks with different structures
Dropout is a kind of ensemble.

Ensemble

Testing data x

- Network 1
- Network 2
- Network 3
- Network 4

y_1, y_2, y_3, y_4

average
Dropout is a kind of ensemble.

- Using one mini-batch to train one network
- Some parameters in the network are shared

Training of Dropout

M neurons

2^M possible networks
Dropout is a kind of ensemble.

Testing of Dropout

All the weights multiply \(1-p\%\)

\[
\text{testing data } x \\
\Rightarrow y_1, y_2, y_3, \ldots \Rightarrow \text{average} \approx y
\]
Testing of Dropout

\[z = w_1 x_1 + w_2 x_2 \]

\[z = w_2 x_2 \]

\[z = w_1 x_1 \]

\[z = 0 \]

\[z = \frac{1}{2} w_1 x_1 + \frac{1}{2} w_2 x_2 \]
Recipe of Deep Learning

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

Neural Network

Good Results on Training Data?

Overfitting!

Good Results on Testing Data?
Try another task

“stock” in document

“president” in document

http://top-breaking-news.com/
Try another task

In [12]: x_train[0]
Out[12]:
array([0., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
 0., 0., 1., 0., 1., 1., 1., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,])

In [10]: x_test.shape
Out[10]: (2246, 1000)

In [11]: y_test.shape
Out[11]: (2246, 46)
Live Demo