Ensemble
Framework of Ensemble

• Get a set of classifiers
 • \(f_1(x), f_2(x), f_3(x), \ldots \)

 坦 補 DD They should be diverse.

• Aggregate the classifiers \((properly)\)
 • 在打王時每個人都有該站的位置
Ensemble: Bagging
Review: Bias v.s. Variance

- Large Bias
- Small Bias
- Large Variance
- Small Variance

Error from bias
Error from variance
Error observed

Overfitting
Underfitting

Large Bias → Small Bias
Small Variance → Large Variance
A complex model will have large variance. We can average complex models to reduce variance. If we average all the \(f^* \), is it close to \(\hat{f} \)?

\[
E[f^*] = \hat{f}
\]
Bagging

N training examples

Sampling N' examples with replacement
(usually $N=N'$)
Bagging

This approach would be helpful when your model is complex, easy to overfit.

e.g. decision tree

Testing data x

Function 1

Function 2

Function 3

Function 4

y_1

y_2

y_3

y_4

Average/voting
Decision Tree

Assume each object x is represented by a 2-dim vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Can have more complex questions

Class 1
Class 2
Class 1
Class 2

The questions in training number of branches, Branching criteria, termination criteria, base hypothesis
Experiment: Function of Miku

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/theano/miku

(1st column: x, 2nd column: y, 3rd column: output (1 or 0))
Experiment: Function of Miku

Single Decision Tree

Depth = 5

Depth = 10

Depth = 15

Depth = 20
Random Forest

- Decision tree:
 - Easy to achieve 0% error rate on training data
 - If each training example has its own leaf

- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient
 - Randomly restrict the features/questions used in each split

- Out-of-of-bag validation for bagging
 - Using RF = $f_2 + f_4$ to test x^1
 - Using RF = $f_2 + f_3$ to test x^2
 - Using RF = $f_1 + f_4$ to test x^3
 - Using RF = $f_1 + f_3$ to test x^4

<table>
<thead>
<tr>
<th>train</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^1</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>x^2</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>x^3</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>x^4</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
</tr>
</tbody>
</table>

Out-of-bag (OOB) error
Good error estimation of testing set
Experiment:
Function of Miku

Random Forest
(100 trees)
Ensemble: Boosting

Improving Weak Classifiers
Boosting

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.

- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - Find another function $f_2(x)$ to help $f_1(x)$
 - However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
 - We want $f_2(x)$ to be complementary with $f_1(x)$ (How?)
 - Obtain the second classifier $f_2(x)$
 - Finally, combining all the classifiers

- Training data:
 \[
 \{(x^1, \hat{y}^1), \ldots, (x^n, \hat{y}^n), \ldots, (x^N, \hat{y}^N)\}
 \]
 \[
 \hat{y} = \pm 1 \text{ (binary classification)}
 \]
How to obtain different classifiers?

- Training on different training data sets
- How to have different training data sets
 - Re-sampling your training data to form a new set
 - Re-weighting your training data to form a new set
 - In real implementation, you only have to change the cost/objective function

\[
L(f) = \sum_{n} l(f(x^n), \hat{y}^n)
\]

\[
L(f) = \sum_{n} u^n l(f(x^n), \hat{y}^n)
\]

- \((x^1, \hat{y}^1, u^1)\) \(u^1 = 1\) 0.4
- \((x^2, \hat{y}^2, u^2)\) \(u^2 = 1\) 2.1
- \((x^3, \hat{y}^3, u^3)\) \(u^3 = 1\) 0.7
Idea of Adaboost

- Idea: **training** \(f_2(x) \) **on the new training set that fails** \(f_1(x) \)
- How to find a new training set that fails \(f_1(x) \)?

\(\varepsilon_1 \): the error rate of \(f_1(x) \) on its training data

\[
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \quad Z_1 = \sum_n u_1^n \quad \varepsilon_1 < 0.5
\]

Changing the example weights from \(u_1^n \) to \(u_2^n \) such that

\[
\frac{\sum_n u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5
\]

Training \(f_2(x) \) based on the new weights \(u_2^n \)

The performance of \(f_1 \) for new weights would be random.
Re-weighting Training Data

• Idea: **training** \(f_2(x) \) **on the new training set that fails** \(f_1(x) \)

• How to find a new training set that fails \(f_1(x) \)?

\[
\begin{align*}
(x^1, \hat{y}^1, u^1) & \quad u^1 = 1 & \quad \text{✓} \\
(x^2, \hat{y}^2, u^2) & \quad u^2 = 1 & \quad \times \\
(x^3, \hat{y}^3, u^3) & \quad u^3 = 1 & \quad \text{✓} \\
(x^4, \hat{y}^4, u^4) & \quad u^4 = 1 & \quad \text{✓}
\end{align*}
\]

\[
\begin{align*}
\varepsilon_1 &= 0.25 \\
f_1(x) &= 0.5 \\
f_2(x) &< 0.5
\end{align*}
\]
Re-weighting Training Data

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

\[
\begin{aligned}
\text{If } x^n \text{ misclassified by } f_1 \ (f_1(x^n) \neq \hat{y}^n) \\
& u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \quad \text{increase}
\end{aligned}
\]
\[
\begin{aligned}
\text{If } x^n \text{ correctly classified by } f_1 \ (f_1(x^n) = \hat{y}^n) \\
& u_2^n \leftarrow u_1^n \text{ divided by } d_1 \quad \text{decrease}
\end{aligned}
\]

f_2 will be learned based on example weights u_2^n

What is the value of d_1?
Re-weighting Training Data

\[\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \]

\[\sum_n u_2^n \delta(f_1(x^n) \neq \hat{y}^n) = 0.5 \]

\[Z_1 = \sum_n u_1^n \]

\[f_1(x^n) \neq \hat{y}^n \quad u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \]

\[f_1(x^n) = \hat{y}^n \quad u_2^n \leftarrow u_1^n \text{ divided by } d_1 \]

\[= \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 \]

\[= \sum_{f_1(x^n) \neq \hat{y}^n} u_2^n + \sum_{f_1(x^n) = \hat{y}^n} u_2^n \]

\[= \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1 \]

\[\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1} = 2 \]
Re-weighting Training Data

\[\varepsilon_1 = \frac{\sum u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \]

\[Z_1 = \sum_n u_1^n \]

\[\frac{\sum u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5 \]

\[f_1(x^n) \neq \hat{y}^n \quad u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \]

\[f_1(x^n) = \hat{y}^n \quad u_2^n \leftarrow u_1^n \text{ divided by } d_1 \]

\[\frac{\sum_{f_1(x^n)\neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)\neq \hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq \hat{y}^n} u_1^n d_1} = 2 \]

\[\frac{\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)=\hat{y}^n} u_1^n d_1} = 1 \]

\[\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1 = \sum_{f_1(x^n)=\hat{y}^n} u_1^n d_1 \quad \frac{1}{d_1} \sum_{f_1(x^n)\neq \hat{y}^n} u_1^n = d_1 \sum_{f_1(x^n)\neq \hat{y}^n} u_1^n \]

\[\varepsilon_1 = \frac{\sum_{f_1(x^n)\neq \hat{y}^n} u_1^n}{Z_1} \sum_{f_1(x^n)\neq \hat{y}^n} u_1^n = Z_1 \varepsilon_1 \]

\[Z_1 (1 - \varepsilon_1) \]

\[Z_1 \varepsilon_1 \]

\[Z_1 (1 - \varepsilon_1) / d_1 = Z_1 \varepsilon_1 d_1 \]

\[d_1 = \sqrt{(1 - \varepsilon_1) / \varepsilon_1} > 1 \]
Algorithm for AdaBoost

• Giving training data
 \{(x^1, \hat{y}^1, u^1_1), \ldots, (x^n, \hat{y}^n, u^n_1), \ldots, (x^N, \hat{y}^N, u^N_1)\}
 \hat{y} = \pm 1 \text{ (Binary classification), } u^1_1 = 1 \text{ (equal weights)}

• For \(t = 1, \ldots, T \):
 • Training weak classifier \(f_t(x) \) with weights \(\{u^1_t, \ldots, u^N_t\} \)
 • \(\varepsilon_t \) is the error rate of \(f_t(x) \) with weights \(\{u^1_t, \ldots, u^N_t\} \)
 • For \(n = 1, \ldots, N \):
 • If \(x^n \) is misclassified by \(f_t(x) \):
 \[\hat{y}^n \neq f_t(x^n) \]
 \[u^n_{t+1} = u^n_t \times d_t = u^n_t \times \exp(\alpha_t) \quad d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t} \]
 • Else:
 \[\alpha_t = \ln \sqrt{(1 - \varepsilon_t)/\varepsilon_t} \]
 \[u^n_{t+1} = u^n_t / d_t = u^n_t \times \exp(-\alpha_t) \]

\[u^n_{t+1} \leftarrow u^n_t \times \exp(-\alpha_t) \]
Algorithm for AdaBoost

• We obtain a set of functions: $f_1(x), \ldots, f_t(x), \ldots, f_T(x)$

• How to aggregate them?
 • Uniform weight:
 • $H(x) = \text{sign} \left(\sum_{t=1}^{T} f_t(x) \right)$
 • Non-uniform weight:
 • $H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t f_t(x) \right)$

$$\alpha_t = \ln \sqrt{1 - \varepsilon_t} / \varepsilon_t$$

$$u_{t+1}^n = u_t^n \times \exp(-\hat{y}^n f_t(x^n) \alpha_t)$$

Smaller error ε_t, larger weight for final voting

$\varepsilon_t = 0.1$ $\varepsilon_t = 0.4$

$\alpha_t = 1.10$ $\alpha_t = 0.20$
Toy Example

- $t=1$

$T=3$, weak classifier = decision stump

- $f_1(x)$

- $\epsilon_1 = 0.30$
- $d_1 = 1.53$
- $\alpha_1 = 0.42$
Toy Example

$T=3$, weak classifier = decision stump

- **$t=2$**
 - $f_1(x)$:
 - $\alpha_1 = 0.42$

- $f_2(x)$:
 - $\varepsilon_2 = 0.21$
 - $d_2 = 1.94$
 - $\alpha_2 = 0.66$
Toy Example

- $t=3$
 - $f_1(x)$:
 - $\alpha_1 = 0.42$
 - $f_2(x)$:
 - $\alpha_2 = 0.66$
 - $f_3(x)$:
 - $\alpha_3 = 0.95$
 - $\epsilon_3 = 0.13$
 - $d_3 = 2.59$
 - $\alpha_3 = 0.95$

T=3, weak classifier = decision stump
Toy Example

- Final Classifier: $H(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t f_t(x))$
Warning of Math

\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t f_t(x) \right) \quad \alpha_t = \ln \sqrt{\frac{1 - \varepsilon_t}{\varepsilon_t}} \]

As we have more and more \(f_t \) (T increases), \(H(x) \) achieves smaller and smaller error rate on training data.
Error Rate of Final Classifier

- Final classifier: \(H(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t f_t(x)) \)
 \[\alpha_t = \ln\frac{1}{\varepsilon_t} \]

Training Data Error Rate

\[
\frac{1}{N} \sum_n \delta(H(x^n) \neq \hat{y}^n)
\]

\[
\frac{1}{N} \sum_n \delta(\hat{y}^n g(x^n) < 0)
\]

\[
\leq \frac{1}{N} \sum_n \exp(-\hat{y}^n g(x^n))
\]
Training Data Error Rate

\[\leq \frac{1}{N} \sum_{n} \exp(-\hat{y}^n g(x^n)) = \frac{1}{N} Z_{T+1} \]

\[g(x) = \sum_{t=1}^{T} \alpha_t f_t(x) \]

\[\alpha_t = \ln \sqrt{\frac{1 - \varepsilon_t}{\varepsilon_t}} \]

\(Z_t \): the summation of the weights of training data for training \(f_t \)

What is \(Z_{T+1} \)?

\[Z_{T+1} = \sum_n u_{T+1}^n \]

\[u_1^n = 1 \]

\[u_{t+1}^n = u_t^n \times \exp(-\hat{y}^n f_t(x^n)\alpha_t) \]

\[Z_{T+1} = \sum_n \prod_{t=1}^{T} \exp(-\hat{y}^n f_t(x^n)\alpha_t) = \sum_n \exp \left(-\hat{y}^n \sum_{t=1}^{T} f_t(x^n)\alpha_t \right) \]
Training Data Error Rate

\[
\leq \frac{1}{N} \sum_{n} \exp(-\hat{y}^n g(x^n)) = \frac{1}{N} Z_{T+1}
\]

\[Z_1 = N \text{ (equal weights)}\]

\[Z_t = Z_{t-1}\varepsilon_t \exp(\alpha_t) + Z_{t-1}(1 - \varepsilon_t)\exp(-\alpha_t)\]

Misclassified portion in \(Z_{t-1}\)
Correctly classified portion in \(Z_{t-1}\)

\[= Z_{t-1}\varepsilon_t \sqrt{(1 - \varepsilon_t)/\varepsilon_t} + Z_{t-1}(1 - \varepsilon_t)\sqrt{\varepsilon_t/(1 - \varepsilon_t)}\]

\[= Z_{t-1} \times 2\sqrt{\varepsilon_t(1 - \varepsilon_t)}\]

\[Z_{T+1} = N \prod_{t=1}^{T} 2\sqrt{\varepsilon_t(1 - \varepsilon_t)}\]

Training Data Error Rate \(\leq \prod_{t=1}^{T} 2\sqrt{\varepsilon_t(1 - \varepsilon_t)} < 1\)

\[g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)\]

\[\alpha_t = \ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}\]
End of Warning
Even though the training error is 0, the testing error still decreases?

\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t f_t(x) \right) \]

\[g(x) \]

Margin = \(\hat{y} g(x) \)
Large Margin?

Training Data Error Rate =

\[
\frac{1}{N} \sum_n \delta(H(x^n) \neq \hat{y}^n)
\]

\[
\leq \frac{1}{N} \sum_n \exp(-\hat{y}^n g(x^n))
\]

\[
= \prod_{t=1}^{T} 2 \sqrt{\epsilon_t (1 - \epsilon_t)}
\]

Getting smaller and smaller as T increase
Experiment:
Function of Miku

Adaboost + Decision Tree

(depth = 5)
To learn more ...

• Introduction of Adaboost:
 • Freund; Schapire (1999). "A Short Introduction to Boosting"

• Multiclass/Regression

• Gentle Boost
 • Schapire, Robert; Singer, Yoram (1999). "Improved Boosting Algorithms Using Confidence-rated Predictions".
General Formulation of Boosting

• Initial function $g_0(x) = 0$

• For $t = 1$ to T:
 • Find a function $f_t(x)$ and α_t to improve $g_{t-1}(x)$
 • $g_{t-1}(x) = \sum_{i=1}^{t-1} \alpha_i f_i(x)$
 • $g_t(x) = g_{t-1}(x) + \alpha_t f_t(x)$

• Output: $H(x) = \text{sign}(g_T(x))$

What is the learning target of $g(x)$?

Minimize $L(g) = \sum_n l(\hat{y}^n, g(x^n)) = \sum_n \exp(-\hat{y}^n g(x^n))$
Gradient Boosting

- Find $g(x)$, minimize $L(g) = \sum_n \exp(-\hat{y}^n g(x^n))$
- If we already have $g(x) = g_{t-1}(x)$, how to update $g(x)$?

Gradient Descent:

$$g_t(x) = g_{t-1}(x) - \eta \left. \frac{\partial L(g)}{\partial g(x)} \right|_{g(x) = g_{t-1}(x)} - \eta \sum_n \exp(-\hat{y}^n g_{t-1}(x^n))(\hat{y}^n)$$

Same direction

$$g_t(x) = g_{t-1}(x) + \alpha_t f_t(x)$$
Gradient Boosting

\[f_t(x) \quad \sum_n \exp(-\hat{y}^n g_t(x^n))(\hat{y}^n) \]

We want to find \(f_t(x) \) maximizing

\[\sum_n \exp(-\hat{y}^n g_{t-1}(x^n))(\hat{y}^n) f_t(x^n) \]

Same direction

Minimize Error

Example weight \(u^*_t \)

\[u^*_t = \exp(-\hat{y}^n g_{t-1}(x^n)) = \exp \left(-\hat{y}^n \sum_{i=1}^{t-1} \alpha_i f_i(x^n) \right) \]

Exactly the weights we obtain in Adaboost

\[= \prod_{i=1}^{t-1} \exp(-\hat{y}^n \alpha_i f_i(x^n)) \]
Gradient Boosting

- Find $g(x)$, minimize $L(g) = \sum_n \exp(-\hat{y}^n g(x^n))$

$$g_t(x) = g_{t-1}(x) + \alpha_t f_t(x)$$

α_t is something like learning rate

Find α_t minimizing $L(g_{t+1})$

$$L(g) = \sum_n \exp(-\hat{y}^n (g_{t-1}(x) + \alpha_t f_t(x)))$$

$$= \sum_n \exp(-\hat{y}^n g_{t-1}(x)) \exp(-\hat{y}^n \alpha_t f_t(x))$$

$$= \sum_{\hat{y}^n \neq f_t(x)} \exp(-\hat{y}^n g_{t-1}(x^n)) \exp(\alpha_t)$$

$$+ \sum_{\hat{y}^n = f_t(x)} \exp(-\hat{y}^n g_{t-1}(x^n)) \exp(-\alpha_t)$$

Find α_t

such that

$$\frac{\partial L(g)}{\partial \alpha_t} = 0$$

$$\alpha_t = \ln \sqrt{\frac{1 - \varepsilon_t}{\varepsilon_t}}$$

Adaboost!
Cool Demo

• http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
Ensemble: Stacking
Voting

Majority Vote

小明’s system
老王’s system
老李’s system
小毛’s system

x → y → y → y → y
Stacking

- 小明’s system
- 老王’s system
- 老李’s system
- 小毛’s system

Training Data → Final Classifier

x → y → y → y → as new feature