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ABSTRACT

Video captioning task has been a widely research topic of
computer vision and machine learning. Most of the related
works consider pure visual contents for description genera-
tion. On the other hand, auditory contents contain rich in-
formation for describing the scenes, such as human speech or
environment sounds, but not widely explored in video caption
generation yet. In this paper, we take full advantage of audi-
tory contents in videos and experimented different approaches
of exploiting auditory contents. Audio information improved
caption generation in terms of popular evaluation methods in
natural language generation such as BLEU, CIDer and ME-
TEOR. We also measured the semantic similarities between
generated captions and human provided ground truth by sen-
tence embedding, and found that machine generates captions
more semantically related to the ground truth with good use
of multi-modal contents. By analyzing the generated sen-
tences, we found that some ambiguous situations for visual-
only models which obtained incorrect results are resolved by
the auditory-considering approaches.

Index Terms— Video caption generation

1. INTRODUCTION

Video captioning, in which machine generates one or multi-
ple sentences to describe the content of a video clip, is a criti-
cal step towards machine intelligence, and it has many useful
applications including video retrieval, automatic video subti-
tling, blind navigation, etc. Video captioning has been widely
studied, and most of the related works exploit visual-contents
only. However, humans understand the environments by not
only seeing, but also hearing, so we believe auditory-contents
in video also bring rich information for video captioning. For
example, it is difficult to discriminate ’talking’ and ’singing’
by seeing, but they can be easily distinguished by hearing.
For another example, it is hard to know whether two people
are ’talking’ or ’arguing’ only by vision, but the two situations
can be easily separated by the loudness of voice. Moreover, it
is possible that the source of the sound does not appear in the
video. In such situation, machine cannot know the existence
of the sound source without hearing. Therefore, machine
should consider both visual and auditory contents in video
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when doing captioning. There are already some attempts us-
ing auditory-content to improve video captioning [1, 2], but
auditory-contents are not always shown to be helpful [3].

In this paper, we use a large variety of auditory-content
representation techniques to improve video caption genera-
tion. Besides MFCC features which have been used in the
previous work [1, 2, 3], we also use ASR system outputs,
and the audio representation extracted by deep neural net-
work including Audio Word2Vec [4] and SoundNet [5].
We compared the performance of different audio representa-
tions under different video caption generation models. The
common evaluation measures like BLEU [6], CIDEr [7],
ROUGE L [8] and METEOR [8] evaluate the difference
between generated captions and human-labeled sentences
only on literal level. Besides evaluating results literally, in
this paper, we further evaluate results on semantic level by
computing the similarities by sentence embeddings [9].

2. RELATED WORKS

There are two categories of methods to achieve video cap-
tioning: template-based methods[10, 11, 12, 13] and se-
quence learning methods[14, 15, 16, 17, 18, 19, 20, 21]. For
template-based methods, the objects are first recognized, and
the names of the detected objects are filled into predefined
language templates to generate captions. The diversity of
generated sentences highly depends on the number of the pre-
defined templates. Sequence learning methods generate sen-
tences with more flexible syntactical structure by sequence-
to-sequence model. The sequence-to-sequence model learns
the probability of a word sequence given a video clip using
the encoder-decoder architecture. In encoder-decoder archi-
tecture, the encoder takes a video clip as input and encodes
it to the embedding space, then the decoder decodes the
embedding vector into descriptions word by word.

Most of the video captioning task are based on visual
contents. There is only a few examples exploiting auditory-
contents. Ramanishka et al. proposed a multi-modal video
description model [1], which exploited the category label and
audio which was represented by MFCCs. Qin Jin et al. also
considered multi-modal in video captioning [2], and the audio
was represented by acoustic codebook and concatenated with
visual features. Hori et al. proposed to expand the attention
model to selectively attend on multi-modal features. MFCCs



Fig. 1: The features used in video captioning.

were used to represent audio as well, and they were the inputs
of a biLSTM which was jointly learned with the whole video
caption models.

In video captioning, the visual features are usually ex-
tracted by a pre-trained deep convolution neural network
like VGGnet [22], Alexnet [23] and GoogleNet [24], but au-
dio is usually simply represented by MFCCs. On the other
hand, there are several ways to pre-train a deep learning
model for audio feature extraction [4, 25, 26, 27, 5], but
not exploited in video captioning. Chung et al. proposed
an unsupervised way for audio representation which is en-
coded by a sequence-to-sequence auto-encoder and named
such features as Audio Word2Vec [4]. Aytar et al. pro-
posed a deep convolution neural network named SoundNet
for audio feature extraction [5] . By transfer knowledge from
ImageCNN [28] and PlaceCNN [29], SoundNet features can
detect the environment sounds and object sounds. The fea-
tures extracted by sequence-to-sequence auto-encoder, that is,
Audio Word2Vec, and SoundNet are used to enhance video
captioning in this paper.

3. APPROACH

3.1. Feature Representation

The features used to represent a video clip in this paper is
shown in Fig. 1. Here visual-contents are represented as a se-
quence of vectors extracted by a CNN. In this paper, we focus
on exploiting the auditory-contents. Besides Mel-Frequency
Cepstral Coefficient (MFCC), we use Audio Word2Vec and
SoundNet for audio representations. ASR transcriptions are
also considered. More details are shown below.

Audio Word2Vec. Audio Word2Vec encodes an audio
segment into a fixed-length vector [4], which is learned from
audio data without human annotation using Sequence-to-
sequence Audoencoder (SA). SA consists of two LSTMs,
one for encoding and the other for decoding. Encoder reads
an audio segment represented as an acoustic feature (e.g.
MFCC) sequence X = (x1, x2, x3...xT ) and maps it to a
fixed-length vector z. Then decoder maps the fixed-length
vector z to another sequence Y = (y1, y2, y3...yT ). Encoder

and decoder are jointly trained to minimize the difference
between sequence X and Y , measured by mean squared error∑T

t=1 ||xt − yt||2. Because the input X can be reconstructed
from the fixed-length vector z, it will be the meaningful rep-
resentation of input sequence X . Because training target
of SA is the input of network, Audio Word2Vec does not
need labeled data to train. In this paper, the auditory-content
of a video clips are segmented into audio segments with
equal time interval, and then each segment is represented by
the fixed-length vector z. Hence, by Audio Word2Vec, the
auditory-content is also represented as a sequence of vectors.

SoundNet. SoundNet [5] is a deep CNN for natural sound
recognition. By transfer learning from the CNNs for object
and scene recognition, SoundNet learns to classify object and
scene by auditory-contents only. The hidden layer output of
SoundNet can be used to represent a small segment of raw
waveform, so we can represent the auditory-content of a video
clip by a sequence of vectors based on SoundNet.

Sentence Embedding of ASR transcriptions. The con-
tent of human voice in a video clip is helpful for machine to
generate more specific descriptions. Therefore, we utilize au-
tomatic speech recognition (ASR) system to transcribe human
voice in videos, and using sentence embedding technique [30]
to represent the transcription as a fixed-length vector.

3.2. Model Architecture

The existing models [17, 20] are adjusted to integrate visual-
content with auditory-content. Three model architectures
used here are shown in Fig. 2, and respectively described in
Section 3.2.1, Section 3.2.2 and Section 3.2.3. In Fig. 2, the
feature sequence extracted from the visual-content is the blue
vectors, while the green vectors can be MFCCs, or features
from Audio Word2Vector or SoundNet. Here we assume
the number of blue and green vectors is the same for the
same video clip (it will be more clear how to achieve that
in Section 4.2). We will describe how to use the sentence
embedding of ASR system output in Section 3.2.4.

3.2.1. Bidirectional LSTM

The first model in Fig.3 (A) is modified from the model
proposed by Bin et al. [20]. The input is the concatena-
tion of visual features with MFCCs, or features from Audio
Word2Vector or SoundNet. The model encodes the input with
a bidirectional-LSTM (the red and pink blocks in Fig.3 (A)).
The outputs of bidirectional-LSTM are further processed
by a forward LSTM (the black blocks), whose final output
is the whole video representation1. In decoding stage, the
LSTM for generating description (the orange blocks) takes

1In the original paper [20], the outputs of bidirectional-LSTM are con-
catenated with original visual features as input of another LSTM for gen-
erating final video representation, but it did not show to be helpful in our
preliminary experiments.



Fig. 2: Model architecture for video captioning with visual- and auditory-contents.

Fig. 3: Here we use S2VT model to describe the two ap-
proaches of exploiting ASR transcriptions. The same idea
can be used in all models in Fig. 2.

the whole video representation as input, and output the de-
scription word-by-word until the EOS (End of Sentence)
token is generated.

3.2.2. S2VT

The second model we used is S2VT model [17], shown in
Fig. 2 (B). The model is a two layer LSTM, the first layer for
visual content processing (the upper blocks in red), and the
second layer for caption generation (the lower blocks in or-
ange). The whole caption generation process based on S2VT
has an encoding stage (the first two time steps in Fig. 2 (B))
and a decoding stage (the rest steps). In encoding stage, the
concatenation of visual and audio features are sequentially
fed into upper LSTM. The outputs of the upper LSTM will
be concatenated with zero vectors in vocabulary size as the
input of the lower LSTM. In decoding stage, the input of up-
per LSTM are replaced by zero vectors. The input of lower

LSTM is the concatenation of the output of upper LSTM and
one-hot encoding of the word generated in the last time step.
For the first time step of decoding stage, the input would be
BOS (Begin of Sentence) token. The output of lower LSTM
are the words in the generated caption. We collect the words
in sequence until EOS token is generated.

3.2.3. Two-path Encoding S2VT

In Section 3.2.2, the upper LSTM in S2VT has to process
both visual and audio information. Here we modify S2VT
model to reduce the work load of upper LSTM. The visual
and acoustic features are encoded by separate LSTMs (blue
and green blocks), and then the outputs of the two LSTMs are
concatenated as the input of lower LSTM.

3.2.4. How to Exploit ASR Transcriptions?

The sentence embedding of ASR transcription is a single
vector instead of a vector sequence, so it should be used
differently from other audio representations. Here the two
approaches to use sentence embedding are demonstrated by
S2VT model in Fig. 3. For the first approach, we duplicate
the sentence embedding, and concatenate the sentence em-
bedding with the vision features. For the second approach, to
let sentence embedding influence the caption generation pro-
cess more directly, we concatenate the sentence embedding
with the one-hot encoding of BOS token.

4. EXPERIMENTAL SETUP

4.1. Dataset

Microsoft Research - Video to Text (MSR-VTT) Corpus [31]
was used in the experiments. It contains 7010 video clips for
training and 2990 clips for testing. Each clip corresponds to



(A) Bi-LSTM BLEU@1 BLEU@2 BLEU@3 BLEU@4 CIDEr ROUGH-L METEOR
(A-1) Visual-Only 0.636 0.483 0.360 0.260 0.252 0.517 0.223
(A-2) + MFCC 0.649 0.482 0.355 0.255 0.249 0.510 0.221
(A-3) + A2V-Speech 0.646 0.485 0.356 0.254 0.241 0.509 0.220
(A-4) + A2V-Video 0.641 0.486 0.362 0.261 0.258 0.515 0.220
(A-5) + SoundNet 0.653 0.492 0.362 0.260 0.247 0.516 0.226
(A-6) + ASR-Con 0.649 0.487 0.360 0.259 0.245 0.513 0.222
(A-7) + ASR-Dec 0.600 0.442 0.320 0.224 0.220 0.499 0.210

(B) S2VT BLEU@1 BLEU@2 BLEU@3 BLEU@4 CIDEr ROUGH-L METEOR
(B-1) Visual-Only 0.666 0.513 0.386 0.279 0.260 0.529 0.226
(B-2) + MFCC 0.676 0.527 0.403 0.297 0.282 0.534 0.231
(B-3) + A2V-Speech 0.675 0.525 0.399 0.293 0.290 0.537 0.232
(B-4) + A2V-Video 0.679 0.527 0.399 0.292 0.289 0.537 0.233
(B-5) + SoundNet 0.682 0.536 0.412 0.305 0.279 0.539 0.233
(B-6) + ASR-Con 0.673 0.521 0.393 0.289 0.288 0.534 0.232
(B-7) + ASR-Dec 0.681 0.530 0.405 0.297 0.265 0.536 0.231

(C) 2-S2VT BLEU@1 BLEU@2 BLEU@3 BLEU@4 CIDEr ROUGH-L METEOR
(C-1) Visual-Only 0.666 0.513 0.386 0.279 0.260 0.529 0.226
(C-2) + MFCC 0.624 0.458 0.329 0.225 0.170 0.489 0.204
(C-3) + A2V-Speech 0.660 0.493 0.362 0.254 0.224 0.515 0.218
(C-4) + A2V-Video 0.664 0.515 0.392 0.289 0.280 0.536 0.231
(C-5) + SoundNet 0.681 0.525 0.394 0.286 0.260 0.531 0.232
(C-6) + ASR-Con 0.688 0.530 0.397 0.285 0.267 0.534 0.231
(C-7) + ASR-Dec 0.681 0.530 0.405 0.297 0.265 0.536 0.231

Table 1: Evaluation scores of different models and features.

20 natural language descriptions labeled by AMT workers.
Because some clips are not available, and some do not have
audio, we only used 5928 clips for training and 2623 for test-
ing. The training and testing json files containing video id and
corresponds captions we used in the experiments are provided
here for easy reproduction2.

4.2. Feature Representation

Visual Content Representation. We extracted visual fea-
tures via fc7 layer of VGG 19 layers model [22], which are
4096-dimensional vectors. Following the setting in the previ-
ous work [17], in each video clip, visual features were only
extracted from 80 sampled frames, which resulted in 80 fea-
ture vectors for each clip. The frames were sampled by the
same time interval in each clip, but the lengths of the time in-
tervals were different in different clips. This paper focuses on
the auditory features, so we do not use other kinds of visual
features like optical flow, C3D, etc [17, 1, 3, 19]. Because
80 feature vectors were extracted from the visual content, the
auditory content of a video clip was also represented by 80
vectors no matter the representation approach used, except
sentence embedding of ASR system output, which is only a
single vector.

MFCC: 39-dimensional MFCCs were extracted by Kaldi
toolkit [32], and cepstral mean and variance normalization

2https://github.com/alex82528/video_captioning_
data

were applied. For each clip, we sampled 80 MFCC features
by the same time interval for caption generation.

Audio Word2Vec: We first segmented the audio of each
clip into 80 segments with equal length. As in the previous
work [4], we used sequence-to-sequence autoencoder to en-
code each segment into a 300-dimensional vector. The Audio
Word2Vec model was either learned from Librispeech ASR
corpus [33] or audio content of the training video clips in
MSR-VTT corpus, so we have two sets of Audio Word2Vec
in the following experiments. In this way, we can observe the
influence of the training data domains of Audio Word2Vec
on video captioning. Librispeech ASR corpus contains ap-
proximately 1000 hours english speech data. By training on
this corpus, Audio Word2Vec maintained the characteristics
of human speech [4]. The video clips of MSR-VTT con-
tain sound other then human speech, so Audio Word2Vec
learned from MSR-VTT may include information besides hu-
man speech in the extracted feature vectors.

SoundNet: With over two million videos downloaded
from Flickr, which resulted in over one year continuous natu-
ral sound and video, SoundNet learned good representation of
audio from large unlabeled video. 5-layers and 8-layers mod-
els are available [29]. We used pool5 layer in 8-layers model
which performed best in classification tasks [29]. A sequence
of 256-dimensional vectors is extracted from a video clip.
Because the number of feature vectors extracted by Sound-
Net can be more/less than 80, we have to down/up sample



BLEU@1 BLEU@2 BLEU@3 BLEU@4 CIDEr ROUGH-L METEOR
(A) Visual-Only + Soundnet 0.682 0.536 0.412 0.305 0.279 0.539 0.233
(B) +A2V-Speech 0.698 0.553 0.430 0.323 0.315 0.552 0.241
(C) +ASR-Con 0.701 0.557 0.432 0.327 0.319 0.553 0.244
(D) +A2V-Speech+ASR-Con 0.703 0.559 0.436 0.331 0.331 0.557 0.245

Table 2: Ensembling the results of different audio representations using S2VT model. The results in row (A) is the results in
(B-5) in Table 1.

the features. Each dimension in a feature vector extracted
by SoundNet corresponds to a specific pattern. Because the
feature vectors are the outputs of a pooling layer, and ReLU
activation function is used, all the values in the extracted
vectors are non-negative. We believe that each non-negative
value revealing the existence of a specific pattern, so more
non-negative values in the vectors means that there are richer
information in the corresponding time span. We define the
importance of a feature vector by the summation of the el-
ements in the feature. When a clip has 80 + K frames, we
dumped the least important K frames; when a clip has 80−K
frames, we duplicated the most important K frames3.

Sentence Embedding: We used Microsoft Azure Bing
Speech API to generate ASR transcriptions, and applied a
sentence embedding model [30] to encode it. The model was
trained on English tweets, which output a 700-dimensional
vectors given a sentence. For clips not containing speech, the
ASR system would not generate any results. In such case, we
used a zero vector to represent the sentence.

4.3. Parameter Setting

All LSTM were initialized by uniform distribution in range
of -0.1 to 0.1. S2VT-based models used 256-dimensional
LSTM, and 512-dimensional LSTM were used in bidirec-
tional LSTM-based model in the following experiments4.
Vocabulary size were set to 3000 and we did not use pre-
trained language model on decoding stage. We used a linear
transformation to reduce one-hot representation of a word to
300-dimensional vector as the input of LSTM, the weights of
the transformation were jointly trained with the model. We
trained models for 200 epochs with batch size 100 and Adam
optimizer.

3Although this methods make visual and auditory contents asynchronous,
it leads to slightly better performance than sampling SoundNet feature at
equal intervals. We do not show the experiments of the comparison due to
space limitation.

4In the preliminary experiments, we found that 256- and 512- dimensional
LSTM achieved the best results for S2VT and BiLSTM respectively. We do
not show the results due to space limitation.

Table 3: Semantic evaluation by the similarities between the
sentence embedding of the generated captions and ground
truth. The table shows the results of S2VT with different fea-
tures (part (b) of Table 1 and Table 2).

Features Similarity
(A) Visual-only 0.443
(B) +MFCC 0.452
(C) +A2V-Speech 0.456
(D) +A2V-Video 0.456
(E) +SoundNet 0.450
(F) +ASR-Con 0.454
(G) +ASR-Dec 0.448
(H) +A2V-Speech+SoundNet 0.470
(I) +A2V-Speech+ASR-Con 0.471
(J) +SoundNet+ASR-Con 0.472
(K) +A2V-Speech+SoundNet+ASR-Con 0.477

4.4. Evaluation Methods

BLEU, METEOR, ROUGH-L and CIDEr were used5. These
metrics are widely utilized on natural language generation
task such as machine translation. We also proposed a new
evaluation measure. We trained a Sent2Vec model on the
testing set of MSR-VTT Corpus. We encoded the ground
truth descriptions and generated descriptions into a 700-
dimensional vector, and then computed the cosine similarity
between them. Higher value of similarity means the gener-
ated description is semantically close to the ground truth. The
front method can be seem as literal evaluation, and the latter
is a semantic evaluation.

5. EXPERIMENTAL RESULTS

5.1. Evaluation Scores

Table 1 shows the results of literal evaluation. Parts (A), (B)
and (C) are respectively the results for bidirectional-LSTM,
S2VT and two-path encoding S2VT (2-S2VT). Row (1) in
each part is the baseline using visual information only. The
results in (B-1) and (C-1) are the same because without con-
sidering auditory-content two-path encoding S2VT reduced
to the original S2VT. Rows (2) to (7) exploiting auditory-

5implemented by https://github.com/vsubhashini/
caption-eval



Table 4: Generated results with different features.

https://www.youtube.com/watch?v=1DQwhuFhcJk
start time: 168.17, end time: 179.48
Ground Truth person singing a song
Visual-Only a man is talking about a UNK
+A2V-Speech a man is singing a song
+SoundNet a man is singing

https://www.youtube.com/watch?v=KMydT2yve3k
start time: 955.61, end time: 972.57
Ground Truth people on tv show are talking to a caller
Visual-Only a woman is talking about the lady
+A2V-Speech a man is talking to a woman
+SoundNet a man is talking about a woman s UNK

https://www.youtube.com/watch?v=13iHUdS3Qmo
start time: 223.44, end time: 234.01
Ground Truth a man is in a rap music video
Visual-Only a man and woman are food
+A2V-Speech a music video with a band
+SoundNet a man and woman are talking

content in different ways. A2V-Speech and A2V-Video stand
for Audio Word2Vec learned from Librispeech ASR corpus
and MSR-VTT corpus respectively. ASR-Con and ASR-Dec
represent the two approaches of using sentence embedding:
concatenating with visual features or considering as the input
at decoding stage. The results in rows (B-7) and (C-7) are
the same because when ASR sentence embedding only used
in the decoding state, S2VT and two-path encoding S2VT are
exactly the same. The results in bold is the best results among
all kinds of features with the same model architecture, while
the results with bottom line means it is the best result across
all models and features.

Auditory contents make unapparent influence on bidirec-
tional LSTM model. MFCC is not helpful in terms of all mea-
sures, except BLEU@1 (rows (A-2) v.s. (A-1)). A2V-Video
and SoundNet increased the scores slightly in terms of some
evaluation measures, but not all of them (rows (A-4), (A-5)
s.v. (A-1)). This may be because bidirectional LSTM model
used a single vector to represent the whole video, and it may
be difficult to use a vector to represent both vision and au-
dio information6. The obvious improvements were achieved
by S2VT and 2-S2VT. With S2VT model (part (B)), all audi-
tory contents, especially SoundNet, enhanced the scores. In
2-S2VT model (part (C)), audio features enhanced the perfor-
mance, except MFCC features and A2V-Speech (rows (C-2),
(C-3) v.s. (C-1)). Compared the results of S2VT and 2-S2VT
models (parts (C) v.s. (B)), we found that with audio informa-
tion, S2VT outperformed 2-S2VT in all cases, except using

6In the future work, we are trying to use attention mechanism to deal with
the problem.

ASR-Con (rows (C-6) v.s. (B-6)). The results shows that the
interaction between the vision and audio information in the
upper LSTM of S2VT is helpful, and 2-S2VT outperformed
S2VT with ASR-Con probably because ASR result and the
features extracted by VGG are not at the same level, and lit-
tle interaction is needed between them. Compared across all
model and features in Table 1, SounNet feature plus S2VT
model performed the best (row (B-5)). Because S2VT model
achieved the best performance in Table 1, it was used in all
the following experiments.

We further integrated the results from S2VT models (part
(B) of Table 1). The results of ensemble are listed in Table 2.
The likelihood of the output of each model7 was first com-
puted, and normalized with its length. We consider the nor-
malized likelihoods as the confidence of the generated sen-
tences. Among the results to be integrated, the generated
sentence with the highest normalized likelihood is selected
for evaluation. Because S2VT plus SoundNet (row (B-5) in
Table 1) achieved the best results, we integrated it with the
results of other models. Many different combination were
tested8, and we found that ASR-Con and A2V-Speech are
most complementary with SoundNet, which are rows (B), (C)
and (D) of Table 2. Because SoundNet aims at detecting audio
events instead the content of human speech9, it is reasonable
that ASR-Con and A2V-Speech, which contain the informa-
tion of the content of speech, improved the performance after
integration.

Then we evaluate the semantic correctness of the gener-
ated sentences. Each video has several ground truth descrip-
tions, so we computed the cosine similarities between the gen-
erated sentence and each ground truth description, and took
the maximum similarity as the evaluation score. We averaged
the maximum similarity of each video clip over the testing
set. Table 3 shows the semantic evaluation results of S2VT
with different features (the literal evaluations of the same set
of results have been shown in part (b) of Table 1 and Table 2).
Row (A) is the results of using vision feature only, and rows
(B) to (G) are the results for exploiting auditory-contents. In
terms of semantic evaluation, auditory-contents also increase
the evaluation scores no matter the representation approaches.
Rows (H) to (K) are the results of ensemble. Integrating the
results based on A2V-Speech, SoundNet and ASR-Con im-
proved the performance in terms of semantic evaluation.

5.2. Observation

Table 4 lists some example results from the testing set of
MSR-VTT. The YouTube link and the start and end time of
each example are shown. In each example, we display one
of the ground truth descriptions, and the generated captions

7summing up the logarithm probability of each generated word in sen-
tence

8We cannot show the whole results due to space limitation.
9It is very likely all human speech is considered as the same event and has

very similar features based on SoundNet.



of vision only, and with A2V-Speech or SoundNet. It can
be inferred that auditory features are sensitive to the sound
of gender and auditory-related action. In the fist example
video clip, there is a person sinning. Without hearing, the
machine outputted “a man is talking ... ”. By considering
auditory-content, machine can generate the description “a
man is singing ...”. In the second example, a male host is
talking to a female caller. Compared the results without and
with audio features, we found that machine aware there is
a man in the scene only when it hears. The last example is
a music video, and only the model based on A2V-Speech
produced related caption.

6. CONCLUSION

In this paper, we utilized different kinds of acoustic feature
with different video captioning models. We found that con-
sidering auditory contents truly enhances the task. S2VT plus
SoundNet achieved the best performance, and it can be fur-
ther improved by integrating with models exploiting human
speech. In the future work, we will try more different mod-
els and investigate how vision and audio information interact
with each other in video caption generation.
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