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Abstract—In a text context, document/query expansion has
proven very useful in retrieving objects semantically related to
the query. However, when applying text-based techniques on
spoken content, the inevitable recognition errors seriously de-
grade performance even when the retrieval process is performed
over lattices. We propose the estimation of more accurate term
distributions (or unigram language models) for the spoken doc-
uments by acoustic similarity graphs. In this approach, a graph
is constructed for each term describing the acoustic similarity
among all signal regions hypothesized to be the considered term.
Score propagation based on a random walk over the graph offers
more reliable scores of the term hypotheses, which in turn yield
more accurate term distributions (or unigram language models).
This approach was applied with the language modeling retrieval
approach, including using document expansion based on latent
topic analysis and query expansion with a query-regularized
mixture model. We extend these approaches from words to
subword n-grams, and the query expansion from document-
level to utterance-level and from term-based to topic-based.
Experiments performed on Mandarin broadcast news showed
improved performance under almost all tested conditions.

Index Terms—Spoken Content Retrieval, Random Walk, La-
tent Semantic Analysis, Query Expansion, Document Expansion

I. INTRODUCTION

In recent years, the demand for information in our daily
lives has clearly gone beyond traditional text information [1].
With the ever-increasing bandwidth of the Internet and rapidly
falling storage costs, multimedia data such as shared videos,
broadcast programs, lectures, meeting records, and many other
video/audio materials are now the most widely accessed net-
work content. However, compared to text, multimedia/audio
content is difficult to retrieve and browse, while the speech
information included in such content very often indicates
its subject or topic. This underscores the need for efficient
technologies for retrieving spoken content, which will provide
users with easy access to the huge quantities of multime-
dia/audio resources over the Internet.

Substantial effort has been made in spoken content retrieval
in recent years, and many successful techniques have been
developed [2], [3]. Lattice-based approaches that take into
account multiple recognition hypotheses [4], [5] have been
used to take mitigate the relatively low accuracy in one-best
transcriptions. In some example approaches, lattices have been
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compressed into more compact structures such as position-
specific posterior lattices (PSPL) [6], [7] and confusion net-
works (CN) [7], [8] to facilitate indexing and save on memory
space. Weighted finite state transducer (WFST) algorithms
have provided another effective way to index and retrieve
lattices [9], [10]. Out-of-vocabulary (OOV) queries represent
another important problem because typically many queries
contain OOV terms [11]. The most fundamental approach for
handling the OOV problem is to represent both the queries
and the spoken content by properly chosen subword units
and then to try to match them at the subword level [12]–
[21]. Word-based and subword-based indexing can be further
integrated to yield better performance [13], [22], [23]. Many
successful applications have been demonstrated with good
examples including those browsing over broadcast news [24],
[25], course lectures [26], [27], historical spoken archives [28],
podcasts [29], and YouTube videos [30]. However, most works
in spoken content retrieval remain focused on spoken term
detection (STD), for which the goal is simply returning spoken
segments that include the query terms. This is insufficient
because users naturally expect the technologies to return all
the objects they are looking for, regardless of whether the
query terms are included or not. For example, when the user
enters the query “airplane”, a system that returns only spoken
documents including the query term “airplane” but not those
containing the related term “aircraft” may not meet the user’s
information needs. This consideration has led to extensive
recent work on the semantic retrieval of spoken content [31]–
[39].

There are in general two stages for semantic retrieval of
spoken content. In the first stage, the audio content is rec-
ognized and transformed into transcriptions or lattices based
on a set of acoustic models and language models. In the
second stage, after the user enters a query, the retrieval engine
searches through the recognition output and returns a list
of relevant spoken documents to the user. Taking the one-
best transcriptions as the text for the content, any technique
developed for text information retrieval, such as language
modeling retrieval and query/document expansion [40]–[45],
can be directly applied to the semantic retrieval of spoken
content. Language modeling retrieval has been shown very
effective for information retrieval not only for text, but for
spoken content as well [31], [32], [34], [46]. Although it
does not directly address the problem of relevant documents
that do not contain the query terms, it provides a reasonable
framework on top of which other advanced techniques can
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be applied in addition. With document expansion, to handle
the problem of term usage mismatch between the queries and
the documents semantically related to the queries, each text
or spoken document is expanded by those terms related to
its content based on latent topic analysis [31], [34], [35].
Query expansion offers another effective way to retrieve
semantically related documents in text or spoken form; this
enriches the representation of short queries with some related
terms. Automatic query expansion techniques widely studied
in text information retrieval such as the relevance model and
the query-regularized mixture model have been successfully
applied to spoken content retrieval as well [31], [32], [34].
External information from the web is also helpful for the
expansion of both spoken documents and queries [36]–[39].

Although the above techniques seem promising, because
these techniques for spoken content retrieval were originally
developed for text without errors, the inevitable recognition
errors and resulting uncertainty may seriously degrade per-
formance. One way to handle the problem of recognition
errors is to consider multiple recognition hypotheses of spoken
documents using lattice structures. However, when the acoustic
models and language models used in the recognition are
highly mismatched to the target spoken archive, even though
the correct word hypotheses may be included in the lattices,
incorrect noisy hypotheses may make it very difficult to extract
the desired information from the spoken documents.

For spoken term detection, it has been found that graph-
based re-ranking using acoustic feature similarity between
query hypotheses is very helpful [47]–[49]. The basic as-
sumption for this approach is that acoustic feature sequences
representing different occurrences of the same term may be
similar in some aspects, and consequently that very different
feature sequences are probably different terms. Therefore, for
each given user query, all signal regions hypothesized to be
the query term with confidence scores are used to construct
a graph in which each node represents a signal region hy-
pothesized to be the query term, and the edge weights are the
similarities between the acoustic feature sequences for the two
corresponding nodes. Based on the above assumption, nodes
strongly connected to more nodes with higher confidence
scores on the graph should have higher confidence scores;
confidence scores for the nodes thus propagate over the graph,
yielding better detection results.

In this paper, we use a similar concept of graphs of acoustic
similarity to estimate more accurately the language models for
the spoken documents for better semantic retrieval. We first
verify that the proposed approach improves the performance
of the standard language modeling retrieval approach, because
better language models for the spoken documents enhanced
with the graphs of acoustic similarity lead directly to better
retrieval. This language modeling retrieval approach can be
otherwise improved by document expansion based on topic
analysis and query expansion based on the query-regularized
mixture model, and we show that under such conditions the
proposed approach offered additional improvements. The doc-
ument/query expansion and the proposed approach are com-
plementary to each other because document/query expansion
focuses on retrieving the relevant documents without the query

terms, while the spoken documents are better represented by
the proposed approach. In addition, the approach can be
equally applied to different granularities of terms including
words, subword units, or several consecutive words or sub-
words, and information from different granularities of terms
can be fused to improve retrieval performance. Furthermore,
we also extend the query-regularized mixture model from the
document level [43] to the utterance level and incorporate
latent topic information with query expansion.

The remainder of this paper is structured as follows. We
present the language modeling approach for spoken content
retrieval and the proposed graph-based enhancement approach
in Section II. Document and query expansion approaches for
spoken content are then described in Sections III and IV
respectively. Experiments are reported in Sections V and VI,
and in Section VII are the concluding remarks.

II. LANGUAGE MODELING RETRIEVAL APPROACH FOR
SPOKEN CONTENT

Here we start with the language modeling retrieval approach
using one-best transcriptions in Section II-A, which is exactly
the same as the conventional language modeling retrieval
approach for text information retrieval. Then we explain how
it is extended to spoken content with lattices in Section II-B,
and present the proposed graph-based enhancement approach
in Section II-C.

A. Conventional Language Modeling Retrieval Approach

The language modeling retrieval approach has been shown
to be very effective for both text and speech information
retrieval [31], [32], [34], [46]. The conventional language
modeling approach for text can be directly applied on spoken
content as long as the spoken content is transcribed into one-
best transcriptions. The basic idea for this approach is that
the query Q and document d are respectively represented as
unigram language models θQ and θd, or term distributions
P (t|θQ) and P (t|θd), where t is a term1. The relevance score
function S(Q, d) used to rank the documents d with respect to
the given query Q is the inverse of the KL divergence between
θQ and θd:

S(Q, d) = −KL(θQ||θd). (1)

That is, documents whose unigram language models are sim-
ilar to the query’s unigram language model are more likely to
be relevant. In this way, the problem of retrieval is reduced to
the estimation of the unigram language models for the queries
and documents. We here assume that the term t can be a
sequence of n consecutive words or subword units (referred
to as word or subword n-gram, or a word or a subword unit if
n = 1). In other words, here θQ and θd are the distributions
of such word or subword n-grams. Therefore, although θQ
and θd are just unigram language models in the following
discussion, the context information can be naturally considered

1In the following discussion, we assume that both θQ and θd are unigram
language models, although the language modeling retrieval approach is not
limited to this case. Although there is ongoing work to extend the language
model from just unigrams to also include n-grams and grammars, this has
yielded only mild gains [50].
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with longer n-grams, and the problem of OOV queries can
be properly handled with subword units. The results based on
word and subword n-grams can be properly integrated to yield
better results.

Here we focus only on queries in text form. Although it is
certainly possible to extend the proposed approaches to spoken
queries if they are transcribed into text symbols, this is out of
the scope of this paper. Usually the unigram language model
θQ for the query Q is estimated based on the terms in Q as

P (t|θQ) =
N(t, Q)∑
tN(t, Q)

, (2)

where P (t|θQ) is the probability of generating the term t
from the model θQ, and N(t, Q) the occurrence counts of
the term t in Q. The denominator of (2) normalizes N(t, Q)
into probabilities P (t|θQ).

Even though the documents considered here are spoken,
when they are transcribed into one-best transcriptions, the
estimation of a document’s unigram language model is exactly
the same as that for text. A document’s unigram language
model θ1bd is first estimated based on the terms in the one-
best transcriptions of spoken document d in (3) below. The
superscript 1b indicates that the unigram language models are
directly derived from the one-best transcriptions. Then θ1bd is
interpolated with a background model θ1bb in (4) trained from
the one-best transcriptions of all the spoken documents in the
archive to be retrieved from to form a smoothed document
model θ̄1bd in (5).

P (t|θ1bd ) =
N(t, d)∑
tN(t, d)

, (3)

where N(t, d) is total counts for term t in the one-best
transcriptions of d, and the denominator is the summation over
all terms t.

P (t|θ1bb ) =
N(t, C)∑
tN(t, C)

, (4)

where C represents the whole spoken document collection to
be retrieved from, and N(t, C) is the total count for term t in
the one-best transcriptions of C.

P (t|θ̄1bd ) = λdP (t|θ1bd ) + (1− λd)P (t|θ1bb ), (5)

where λd = Ld

Ld+κ
is a document-dependent interpolation

weight, and κ is a parameter to be tuned. Ld is the document
length, which if the term t being considered is a word n-
gram is the total number of words in d, or if term t is a
subword n-gram2 is the total number of subwords in d. With
the document-dependent weight λd, the background model has
more influence on shorter documents. The same smoothing
strategies have been widely applied in text information re-
trieval: like the well-known inverse document frequency [51],
it has been shown that such smoothing strategies implicitly
weight rare but informative terms. The smoothed model θ̄1bd
in (5) is used for θd in (1) for ranking. Due to the inevitable
high rate of errors in one-best transcriptions, θ̄1bd thus estimated

2For a document d with Ld words, there are exactly Ld−(n−1) different
word n-grams. Therefore, Ld − (n − 1) is a more precise definition of the
document length. However, because Ld considered here is relatively large but
n considered here is usually small, we simply use Ld as the document length.

may vary widely from the true word distribution of the spoken
document.

B. Language Modeling Retrieval Approach for Spoken Con-
tent based on Lattices

Fig. 1: Hypothesized regions of terms in a lattice. The upper
part is a word lattice of a spoken segment, and the word
hypotheses and posterior probabilities of the arcs are shown
beside each arc. The lower part is the hypothesized regions
of terms obtained from the lattice; the confidence scores are
shown beside each hypothesized region.

For spoken content, lattices are better representations than
one-best transcriptions, so each document in the speech
archive to be retrieved through is first divided into spoken
segments, each of which is decoded into lattice form. The
lattices can be either word- or subword-based, or the arcs in
the lattices can be either word or subword hypotheses. Since
the paths embedded in the lattices have different acoustic like-
lihoods and language model scores, the occurrence frequencies
of the terms in the spoken segments cannot be directly counted
from the lattices. Here we first define the hypothesized regions
for the terms from the lattices of the spoken segments. The
document models are then estimated using these hypothesized
regions.

Fig. 1 shows how we define the hypothesized regions for
word 1-grams, or single words, from a word lattice. This
can be directly extended to longer n-grams and subword-
based lattices. The upper part of Fig. 1 is a word lattice
of a spoken segment: the word hypotheses and posterior
probabilities for the arcs are shown beside each arc. The
lower part of Fig. 1 is the hypothesized regions for the terms
obtained from the lattice. First, each arc in the word lattice
in the upper half of Fig. 1 corresponds to a possible term
occurrence. Then arcs corresponding to the same term with
similar time spans are clustered into a single group to define
a single hypothesized region of the term. Each hypothesized
region has a representative time span and a confidence score
describing the posterior probability that the term occurs in
this time span (also shown beside each hypothesized region
in the lower part of Fig. 1). The detailed procedure for this
is presented below. In general, when word/subword n-grams
are taken as terms, each arc sequence with n consecutive arcs
in the word/subword-based lattices corresponds to a possible
occurrence of a term; everything else is handled similarly.
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Below we present the algorithm to obtain from a lattice the
hypothesized regions for a term under consideration. For all
the terms t in the lattice of a spoken segment x, we conduct
the following steps to find the hypothesized regions of t:

(i) Collect all the arc sequences a corresponding to t in
the lattice of segment x to form a set At. Each arc
sequence has a posterior probability P (a|x) derived from
the acoustic likelihoods and language model scores from
the lattice for x:

P (a|x) =
∑

u∈L(x),a∈u

P (u|x), (6)

where u is a path in the lattice, and L(x) the set of all
possible paths in the lattice for x. P (u|x) is the posterior
probability of path u,

P (u|x) =
P (x|u)P (u)∑

u∈L(x) P (x|u)P (u)
, (7)

where P (x|u) is the likelihood for the observation se-
quence of x given the path u based on the acoustic model
set, and P (u) the prior probability of u from the language
model. Therefore, P (a|x) is the sum of the posterior
probabilities of all paths in the lattice of x which include
the arc sequence a.

(ii) Find the arc sequence a∗ in At with the largest posterior
probability,

a∗ = argmax
a

P (a|x). (8)

(iii) Find all arc sequences â in At whose time spans include
the center of the time span of a∗ to form a subset Ât
(a∗ ∈ Ât naturally).

(iv) Then the hypothesized region rt for the t is defined
as the time span of a∗ with a confidence score (or the
confidence that t actually occurs in this time span) C(rt):

C(rt) =
∑
â∈Ât

P (â|x). (9)

(v) Remove all the arc sequences in Ât from At. Go to step
(ii) until no elements are left in At. There can be more
than one hypothesis region for a given term t in a lattice.

The document model θlatd for a document d composed
of N spoken segments, d = {x1, · · · , xn, · · · , xN}, is then
estimated in (10). The superscript lat indicates that the models
are directly derived from the lattices.

P (t|θlatd ) =

∑N
n=1

∑
rt∈xn

C(rt)∑
t

∑N
n=1

∑
rt∈xn

C(rt)
, (10)

where the expression rt ∈ xn means the time span of rt, a
hypothesized region of term t, is within the time span of the
spoken segment xn. The numerator of (10) is the sum of the
confidence scores C(rt) for all hypothesized regions of t in
all the spoken segments in d, and the denominator normalizes
it into a probability. Note that because C(rt) is the sum of the
posterior probabilities for a set of arc sequences corresponding
to hypothesized region rt for term t as in (9), and the term∑
rt∈xn

C(rt) in the numerator of (10) is the summation over
all rt in the lattice of a spoken segment xn,

∑
rt∈xn

C(rt) is

exactly the expected term frequency of t based on the lattice
of the spoken segment xn [52]. We separate the arc sequences
corresponding to t into several different hypothesized regions
rt only for the purpose of the proposed graph-based approach
described in the next subsection.

The document model θlatd in (10) is then interpolated with
a background model θlatb in (11) obtained in a similar way as
in (4) but from the lattices of all the spoken segments in the
document collection C to form a smoothed model θ̄latd in (12).

P (t|θlatb ) =

∑
rt∈C C(rt)∑

t

∑
rt∈C C(rt)

, (11)

where the expression rt ∈ C means rt ∈ xn, xn ∈ d, and
d ∈ C, so the numerator considers all hypothesized regions of
term t in the whole collection C, and the denominator further
sums over all the terms.

P (t|θ̄latd ) = λ′dP (t|θlatd ) + (1− λ′d)P (t|θlatb ), (12)

where λ′d =
L′

d

L′
d+κ

is another document-dependent interpola-
tion weight. κ is the parameter used in λd in (5). Since the
lattices are considered here, the document length L′d is the
expected length of the document d estimated from the lattices
of d.

L′d =

N∑
n=1

Lxn , (13)

where
Lxn

=
∑

u∈L(xn)

|u|P (u|xn), (14)

where |u| is the number of arcs (or number of words for
word lattices and number of subword units for subword-based
lattices in the path u). This smoothed model θ̄latd in (12) is
finally used for θd in (1) for ranking.

C. Graph-enhanced Document Model based on Acoustic Sim-
ilarity

Fig. 2: The graph constructed for all hypothesized regions
corresponding to term t in the spoken document collection
C. Each node in the graph represents a hypothesized region
corresponding to t, and the edge weights represent the acoustic
similarities between the nodes.
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Although the document models derived above in (12) from
the lattices may be better than the ones from the one-best
transcriptions, they still inevitably suffer from the recognition
errors and noisy hypotheses in the lattices. Note that when
transcribing speech signals into lattices, much information in
the signals is already lost and not recoverable. A possible
approach to remedy this problem is to incorporate additional
acoustic feature information into the language models de-
rived above to reflect signal-level information. This may be
achieved based on an assumption that the acoustic feature
segments of different occurrences for the same term may
appear somewhat similar because they all include very similar
phoneme segments. Here we make this assumption in an
attempt to improve the document models derived above in
(12). Similar approaches have been applied on spoken term
detection (STD) [47]–[49], [53]–[55].

In this approach, for each term t appearing in the lattices
for the spoken document collection C, we first construct
a graph for t using all the hypothesized regions rt (the
hypothesized regions of t) in C, in which each node represents
a hypothesized region rt in C. Such a graph is shown in
Fig. 2. Dynamic time warping (DTW) is performed between
the acoustic feature sequences corresponding to all the hy-
pothesized region pairs rt and r′t on the graph. This yields
d(rt, r

′
t), the DTW distance between hypothesized regions rt

and r′t. The similarity between rt and r′t is then defined as

S(rt, r
′
t) = 1− d(rt, r

′
t)− dmin

dmax − dmin
, (15)

where dmax and dmin are the largest and smallest values
of d(rt, r

′
t) for all node pairs on the graph. Equation (15)

linearly normalizes the DTW distance and transforms it into
a similarity score between 0 and 1. Only those node pairs for
which S(rt, r

′
t) exceeds a threshold are then connected with

an edge with weight S(rt, r
′
t).

Note that in the above graph each node rt has an original
confidence score C(rt) derived previously from the lattices
in (9). Now with this graph, the above assumption that the
acoustic features for different occurrences of the same term
may be similar implies that those nodes on the graph (or
hypothesized regions for term t) connected to many other
nodes with large edge weights on the graph (or other hypoth-
esized regions for t in the collection C) with higher (or lower)
confidence scores should have higher (or lower) confidence
scores. In other words, the confidence scores C(rt) on the
graph may “propagate” over the graph through connected
edges, or the confidence scores of the hypothesized regions
may be “smoothed” over the graph to produce a new set of
better confidence scores Cg(rt). The superscript g indicates
graph-enhanced.

The above score propagation can be formulated as trying to
find a new set of confidence scores Cg(rt) satisfying (16) for
all rt on the graph.

Cg(rt) = (1− α)C(rt) + α
∑

r′t∈E(rt)

Cg(r′t)Ŝ(r′t, rt), (16)

where Cg(r′t) is the graph-enhanced confidence score, α an
interpolation weight between 0 and 1, E(rt) the set of all

hypothesized regions r′t connected to rt, and Ŝ(r′t, rt) the edge
weight normalized over all edges connected to node r′t on the
graph:

Ŝ(r′t, rt) =
S(r′t, rt)∑

r′′t ∈E(r′t)
S(r′t, r

′′
t )
. (17)

The second term in (16) describes the score propagation on
the graph: the node of rt absorbs the scores from all nodes r′t
connected to rt (r′t ∈ E(rt)) but weighted by Ŝ(r′t, rt), while
the score of r′t is distributed to all nodes r′′t connected to r′t
(r′′t ∈ E(r′t)) as in (17). Therefore, in (16) the graph-enhanced
confidence score Cg(rt) depends on two factors interpolated
by α: the original confidence score C(rt) in (9) (the first
term on the right hand side of (16)) and the score propagation
over the graph (the second term on the right hand side). Thus
Cg(rt) is larger if C(rt) is larger, or if rt is strongly connected
to other hypothesized regions r′t with larger Cg(r′t) on the
graph.

Equation (16) is actually a random walk problem on the
graph. Random walk theory guarantees that the score propa-
gation over the graph converges and a set of unique solutions
of Cg(rt) can be found by the power method [56]. In this
method, each node rt is first given an initial value C0(rt)

3.
Then at each iteration l, Cl−1(rt) obtained in the last iteration
is updated to Cl(rt) as

Cl(rt) = (1− α)C(rt) + α
∑

r′t∈E(rt)

Cl−1(r′t)Ŝ(r′t, rt). (18)

Equation (18) is parallel to (16), except that here Cl(rt) rather
than Cg(rt) is at the left hand side of the equation, and
Cl−1(r′t) replaces Cg(r′t) at the right hand side. Whenever the
results converge, that is, Cl−1(rt) and Cl(rt) are sufficiently
close, Cl(rt) can be taken as the scores Cg(rt) which satisfy
(16). The above process of graph construction and score
propagation by random walk is performed off-line for all terms
t appearing in the lattices for all spoken documents in the
collection C.

The graph-enhanced language model θgd for document d is
then obtained as

P (t|θgd) =

∑N
n=1

∑
rt∈xn

Cg(rt)∑
t

∑N
n=1

∑
rt∈xn

Cg(rt)
, (19)

which is exactly parallel to (10) except that C(rt) is replaced
by Cg(rt). Note that if α is set to 0, that is, the score
propagation over the graph is ignored, then Cg(rt) = C(rt),
and θgd in (19) is reduced to θlatd in (10). The estimation of
the graph-enhanced background model θgb is in (20), which
is exactly parallel to (11) except C(rt) replaced by Cg(rt).
The language model P (t|θgd) in (19) for document d is
then interpolated with a background model θgb to obtain the
smoothed model θ̄gd in (21), which is exactly parallel to (12).

P (t|θgb ) =

∑
rt∈C C

g(rt)∑
t

∑
rt∈C C

g(rt)
. (20)

P (t|θ̄gd) = λ′dP (t|θgd) + (1− λ′d)P (t|θgb ). (21)

The language model θ̄gd is in turn used in (1) for ranking.

3The initial values do not influence the final results.
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III. SPOKEN DOCUMENT EXPANSION WITH
PROBABILISTIC LATENT SEMANTIC ANALYSIS

The problem with retrieving documents that are seman-
tically related to the query is that many of these desired
documents may not necessarily contain the query term. For
example, given the query “airplane”, some relevant documents
may instead contain the term “aircraft”. These relevant docu-
ments are given a very small relevance score S(Q, d) in (1)
because the unigram language models for the query and the
document are very different if they are directly estimated from
the term occurrences in the query and the document. This
problem can be mitigated by incorporating latent topic analysis
approaches. Using such approaches, documents containing the
term “aircraft” may be found to belong to the “flying vehicles”
latent topic; hence we create a better representation of the
document by augmenting the document model with terms
related to “flying vehicles” (like “airplane”) which are not
actually mentioned in the document.

Here we use a very popular approach for latent topic
analysis: probabilistic latent semantic analysis (PLSA) [57].
Extension to other latent topic analysis approaches is cer-
tainly possible. PLSA uses a set of latent topic variables,
{Tk, k = 1, 2, ...,K}, to characterize the “term-document” co-
occurrence relationships in the archive. Given all the spoken
documents in the archive, PLSA training yields P (t|Tk), the
probability of observing a term t given latent topic Tk, and
P (Tk|d), the mixture weight of topic Tk given document d.
Based on this latent topic analysis, the probability of observing
term t given document d is parameterized as

PT (t|d) =

K∑
k=1

P (t|Tk)P (Tk|d). (22)

The superscript T indicates it is based on latent topics. The
parameters P (t|Tk) and P (Tk|d) are learned using the EM
algorithm to maximize the following objective function [57]:

L =
∑
d∈C

∑
t

P (t|θd)logPT (t|d), (23)

where θd can be θ1bd in (3) in Section II-A, θlatd in (10) in
Section II-B or θgd in (19) in Section II-C. All the document
models in (23) can be unigram language models based on word
or subword n-grams (term t can be a word or a subword n-
gram), so PLSA models for both words and subword units can
all be learned. The maximization of (23) can be understood
as the search for a set of parameters P (t|Tk) and P (Tk|d) by
minimizing the KL divergence between the document model
θd and the term distribution PT (t|d) in (22) obtained from
latent topic analysis for all documents d in the collection C.

There are several alternatives to incorporating the above
PLSA into the task of information retrieval. One alternative
is to project both document and query onto the latent topic
space, and rank the documents according to their similarities
in terms of latent topic distributions [57]. However, in recent
experiments this approach did not always offer satisfactory
results [58]. Here, we instead adapt the background model θb
differently for each document d based on its latent topics, so
as to expand the document with semantically related terms via

smoothing with the adapted background model [40]. This is
realized by interpolating the term distribution for document d
based on latent topics, PT (t|d) in (22), with the general back-
ground model θb to yield a document-expanded background
model θb(d) for the document d as in (24), which is document-
dependent.

P (t|θb(d)) = bdP
T (t|d) + (1− bd)P (t|θb). (24)

In (24), θb can be either θ1bb in (5) in Section II-A, θlatb in
(12) in Section II-B, or θgb in (21) in Section II-C. Factor bd
can be λd in (5) if θ1bb is used for θb, or λ′d in (12) if θlatb
or θgb are used instead. This document-dependent expanded
background model θb(d) is then used to smooth the document
models θ1bd in (3) in Section II-A, θlatd in (10) in Section II-B,
or θgd in (19) of Section II-C estimated solely based on the
term occurrences in the documents. Therefore, after θb(d)
smoothing, the probabilities are increased for those words
highly related to the topics addressed by the document d in
the document model.

IV. QUERY EXPANSION
WITH A QUERY-REGULARIZED MIXTURE MODEL

Another popular approach for retrieving semantically related
documents is query expansion, in which semantically-related
terms are automatically added to the query. The expanded
query thus enables the retrieval of documents not containing
the original query terms but semantically related to the query.
Query expansion is often realized using pseudo-relevance
feedback (PRF). The top M documents in the first-pass
retrieved results with the highest S(Q, d) in (1) are assumed
to be relevant (or pseudo-relevant), and the terms that occur
frequently in those pseudo-relevant documents are used for
query expansion. However, since not all pseudo-relevant doc-
uments are truly relevant, and not all words in truly relevant
documents are semantically related to the query, it can be
difficult to select useful terms for query expansion. Below we
borrow the successful query-regularized mixture model [43]
from text information retrieval and apply it to spoken content;
in addition, we extend it from terms (Section IV-A) to topics
(Section IV-B), and from document-level to utterance-level.

A. Term-based Query Expansion

As described and applied on spoken content in Sec-
tion IV-A1 below, the original query-regularized mixture
model is based on terms and is performed at the document
level. We further extend this term-based model to the utterance
level in Section IV-A2.

1) Document-Level Query Expansion: The query-
regularized mixture model assumes that the pseudo-relevant
documents are composed of query-related terms and general
terms, with a document-dependent ratio between the two.
For example, if an irrelevant document is taken as pseudo-
relevant, the document’s ratio for query-related terms to
general ones should be very low. Although these document-
dependent ratios and the determination of which terms are
query-related are unknown, they can be estimated from the
term distributions in the pseudo-relevant documents. Given
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this estimation, these query-related terms form a new query
model θ′Q, which we use to replace θQ in (1).

Suppose the pseudo-relevant spoken document set is
{d1, ..., dm, ..., dM}, where M is the number of documents
in the set. With the assumption that the terms in each pseudo-
relevant spoken segment are either query-related or are general
terms, the document model θdm for a pseudo-relevant docu-
ment dm should be close to an estimated unigram language
model θ′dm in (25), which is the interpolation of the desired
query model θ′Q to be estimated (for query-related terms) with
a background model θb (for general terms) with weights αm
and 1− αm.

P (t|θ′dm) = αmP (t|θ′Q) + (1− αm)P (t|θb), (25)

where αm is the document-dependent interpolation weight for
document dm; this unknown weight must also be estimated.
Hence, the goal here is to find the query model θ′Q and
the weights α1, α2, ..., αM for all pseudo-relevant documents
d1, d2, ..., dM which minimize F1(θ′Q, α1, ..., αM ) in (26).

F1(θ′Q, α1, ..., αM ) =

M∑
m=1

KL(θdm ||θ′dm), (26)

which is the sum of the KL divergences between θdm and
θ′dm for all dm. The resultant query model θ′Q then replaces
θQ in (1). For the spoken documents considered here, the
document model θdm in (26) can be either θ1bdm from the one-
best transcriptions in (3) of Section II-A, θlatdm derived from the
lattices in (10) of Section II-B, or the graph-enhanced version
θgdm in (19) of Section II-C, all of which can be based on either
word or subword n-grams. The corresponding background
model θb is then either θ1bb in (5) of Section II-A, θlatb in (12)
of Section II-B, or θgb in (21) of Section II-C. However, the
model θ′Q yielded by minimizing (26) may simply model the
common content included in the pseudo-relevant documents;
contrary to our desire, it may not necessarily be specifically
query-related. In order to handle this problem, θ′Q is further
“regularized” by the original query model θQ in (2) based on
function F2(θ′Q) as the prior for θ′Q based on θQ:

F2(θ′Q) = KL(θQ||θ′Q). (27)

Because F2(θ′Q) is the KL divergence between θQ and θ′Q, it
is smaller for models θ′Q that are closer to θQ. Therefore, the
desired new query model θ′Q and the weights αm are estimated
by minimizing the objective function

F (θ′Q, α1, ..., αM ) = F1(θ′Q, α1, ..., αM ) + ρF2(θ′Q), (28)

where parameter ρ controls the influence of the prior function
F2(θ′Q). The model θ′Q estimated via minimizing (28) is not
pulled too far away by the pseudo-relevant documents because
the function F2(θ′Q) prefers the estimated query model θ′Q to
be similar to the original query model θQ. This expanded query
model θ′Q is then used as θQ in (1).

The new query model θ′Q maximizing (28) is obtained using
the EM algorithm. Given an initial query model θ0Q and a set
of initial ratios {α0

1, ..., α
0
M}, at the i-th iteration (i = 1, ..., I),

the probabilities of observing term t in every pseudo-relevant
document from the query model θi−1Q are computed based on

{αi−11 , ..., αi−1M } in the E step, and then a new query model θiQ
and ratios {αi1, ..., αiM} for the i-th iteration are then obtained
in the M step. The formulations for the EM algorithm used
here are listed as below:
• E step: For each term t in each document in
{d1, ..., dm, ..., dM}, we first compute the posterior prob-
ability that the term t is generated from θi−1Q :

P (θi−1Q |t, dm) =
αi−1m P (t|θi−1Q )

αi−1m P (t|θi−1Q ) + (1− αi−1m )P (t|θb)
.

(29)
• M step: For each document in {d1, ..., dm, ..., dM}, we

update its ratio of query-related/general terms as

αim =
∑
t

P (θi−1Q |t, dm)P (t|θd) (30)

and the new query model θiQ is updated as

P (t|θiQ) =
ρP (t|θQ) +

∑M
m=1 P (t|θd)P (θi−1Q |t, dm)

ρ+
∑
t

∑M
m=1 P (t|θd)P (θi−1Q |t, dm)

,

(31)
where λ is the parameter in (28).

After I iterations, the model θIQ is finally used as θ′Q.
2) Utterance-Level Query Expansion: We further extend

the above concept from the document level to the utter-
ance level by assuming that each utterance in the pseudo-
relevant documents has its own ratio of query-related terms
to general terms. Let the utterances {x1, ..., xj , ..., xJ} be
the J utterances in the M pseudo-relevant spoken documents
{d1, ..., dm, ..., dM}. The new desired query model θ′Q with
utterance-level query expansion is then obtained by minimiz-
ing

F ′(θ′Q, β1, ..., βJ) = F ′1(θ′Q, β1, ..., βJ) + ρF2(θ′Q), (32)

which is parallel to (28). In (32), {β1, ..., βJ} is the ratio
of query-related terms to general terms for each utterance.
F2(θ′Q) is exactly the same as in (27), and

F ′1(θ′Q, β1, ..., βJ) =

J∑
j=1

KL(θxj
||θ′xj

). (33)

Equation (33) is parallel to (26) except {α1, ..., αM}, θdm
and θ′dm in (26) are respectively replaced by {β1, ..., βJ}, θxj

and θ′xj
. θ′xj

in (33) is also the interpolation of the desired
query model θ′Q (to be estimated) and the background model
θb parallel to (25) with interpolation weight βj :

P (t|θ′xj
) = βjP (t|θ′Q) + (1− βj)P (t|θb). (34)

The model θxj
in (33) is the unigram language model for

utterance xj , which can be based on the one-best transcription
P (t|θ1bxj

) =
N(t,xj)∑
tN(t,xj)

parallel to θ1bd in (3) in Section II-A;

or it can be based on lattices P (t|θlatxj
) =

∑
rt∈xj

C(rt)∑
t

∑
rt∈xj

C(rt)

parallel to (10) in Section II-B; or it can be based on the

graph-enhanced version P (t|θgxj
) =

∑
rt∈xj

Cg(rt)∑
t

∑
rt∈xj

Cg(rt)
parallel

to θgd in (19) in Section II-C.
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B. Topic-based query expansion
The above query expansion technique is based entirely on

terms. Here we further extend this approach to a similar
version but base it on latent topics. In topic-based query
expansion, everything is in parallel with the term-based query-
regularized mixture model as summarized in Subsection IV-A,
but here instead of estimating a term-based query model
(or query-related term distribution) θ′Q, or P (t|θ′Q), we now
seek to estimate a query-related topic distribution φQ over
the latent topics, {P (T1|φQ), ..., P (Tk|φQ), ..., P (TK |φQ)},
or P (Tk|φQ), where Tk is a topic, and K is the number
of topics. We use φ to represent a topic distribution, similar
to using θ representing a term distribution. Here we assume
the topics Tk are obtained using latent topic analysis such as
PLSA, and therefore the probabilities of observing all terms
given each latent topic P (t|Tk) are available. Below we use the
version of document-level query expansion (over documents
dm) to demonstrate topic-based query expansion. Extension
to the utterance level (over utterances xj) is trivial. For
each query Q, the desired topic distribution φQ is estimated
by minimizing the objective function in (35) completely in
parallel to (28) or (32).

FT (φQ, γ1, ..., γM ) = FT1 (φQ, γ1, ..., γM ) + ρF2(φQ), (35)

where

FT1 (φQ, γ1, ..., γM ) =

M∑
m=1

KL(θdm ||θTdm), (36)

FT1 (φQ, γ1, ..., γM ) in (36) are exactly in parallel to (26),
except that αm is replaced by γm, and the term distribution
θ′dm in (25) is replaced by θTdm .

P (t|θTdm) = γmP
T (t|φQ) + (1− γm)P (t|θb), (37)

where

PT (t|φQ) =

K∑
k=1

P (t|Tk)P (Tk|φQ). (38)

Equation (38) is in parallel with (22): while (22) is for
document d, (38) is for topic distribution φQ. F2(φQ) in (35)
is exactly (27).

After obtaining the topic distribution φQ by minimizing
the objective function in (35), the term distribution given the
desired expanded query model θTQ estimated based on the
latent topics is

PT (t|θTQ) =

K∑
k=1

P (t|Tk)P (Tk|φQ). (39)

Equation (39) is exactly the same as (38), except we replace
φQ in (38) by θTQ in (39) because this is a term distribution
rather than a topic distribution, and is thereby better expressed
as θTQ as in (39) rather than φQ in (38). The superscript T in
θTQ indicates this query model (or term distribution) is based
on latent topics. This term distribution or query model θTQ can
be further interpolated with the word-based expanded query
model θ′Q obtained with (28) or (32) to yield a query model
θ′′Q considering both words and topics:

P (t|θ′′Q) = δP (t|θ′Q) + (1− δ)PT (t|θTQ), (40)

where δ is an interpolation weight. The expanded query model
φQ obtained in (35) but expressed as θTQ in (39) based on latent
topics, or the interpolated version θ′′Q in (40) can then be used
as θQ in (1).

V. EXPERIMENTAL SETUP

In the experiments, we used a Mandarin Chinese broadcast
news corpus as the spoken document collection C to be
retrieved through [59]4. The news stories were recorded from
radio or TV stations in Taipei from 2001 to 2003. There were
a total of 5047 news stories, with a total length of 198 hours.
The story lengths ranged from 68 to 2934 characters, with an
average of 411 characters per story. The average time duration
per news story was 2.35 minutes. One hundred sixty-three text
queries and their relevant spoken documents (not necessarily
including the queries) were provided by 22 graduate students.
The query lengths ranged from 1 to 4 Chinese words with
an average of 1.6 words, or 1 to 8 Chinese characters with
an average of 2.7 characters. Some examples for the queries
are “typhoon disaster (颱風災情)”, “election (選舉)” and
“important stock market information (股市重大訊息)”5. The
number of relevant documents for each query ranged from 1
to 50 with an average of 19.5. Forty-one out of 163 queries
were used in the development set for parameter tuning, while
the remaining 122 queries were testing queries.

In order to evaluate the retrieval performance of the pro-
posed approaches with respect to different recognition con-
ditions, we used different acoustic and language models to
transcribe the spoken documents. As listed below, we used
two different recognition conditions to generate the lattices
for the spoken document collection C:
• Condition (I): We used a tri-gram language model trained

on 39M words of Yahoo news, and a set of acoustic
models with 48 Gaussian mixtures per state and 3 states
per model trained on a training corpus of 24.5 hours
of Mandarin broadcast news different from the above
mentioned collection tested here. One hundred forty-
seven right context-dependent Initial models plus context-
independent Final models were used as the acoustic
models. Here Initial is the initial consonant of a Mandarin
syllable, and Final is the vowel/diphthong part with an
optional medial or nasal ending. This kind of acoustic
model has been heavily used to recognize Mandarin
speech. The acoustic features used were MFCCs with
cepstral mean and variance normalization (CMVN). The
character accuracy for the whole collection was 54.43%.

• Condition (II): We cascaded perceptual linear predic-
tive (PLP) features with Mandarin phoneme posterior
probabilities estimated by a multilayer perceptron (MLP)
trained on 10 hours of Mandarin broadcast news different
from those tested here as the input features for a Tandem
system. A tri-gram language model trained on 98.5M
words of news from several different sources, and a set
of acoustic models with 48 Gaussian mixtures per state

4Publicly available via the Association for Computational Linguistics and
Chinese Language Processing (http://www.aclclp.org.tw).

5All queries were in Mandarin Chinese, but translated into English.
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and 3 states per model trained on the above training
set of 24.5 hours of broadcast news were used. The
same configuration of 147 right context-dependent Initial
models plus context-independent Final models used for
Condition (I) was used as well. The character accuracy
was 62.13%.

Both conditions (I) and (II) used a 60K-word lexicon, and the
beam width for decoding was 100. Since 48% and 31% of the
speech in the corpus were produced by the reporters and inter-
viewees respectively which were highly spontaneous including
relatively high background noise, the character accuracy for
them was relatively low (excluding the speech produced by
the reporters and interviewees, the character accuracies for
conditions (I) and (II) were respectively 65.00% and 74.96%).
Such relatively low recognition accuracies are realistic in
the real world and mirror situations where the graph-based
approaches proposed here may be helpful, since retrieval
performance inevitably depends on recognition accuracy. After
the recognition systems transcribed each utterance into a word
lattice, we further transformed each Chinese word arc in the
lattice into a sequence of concatenated corresponding Chinese
character and Mandarin syllable arcs to respectively form
character and syllable lattices, that is, characters and syllables
were taken as the subword units here in the experiments.
Therefore, for each utterance, there were three lattices: word-,
character-, and syllable-based, for the above two recognition
Conditions (I) and (II).

We used mean average precision (MAP) as the evaluation
measure for the following experiments [60]. The pair-wise t-
test with a significance level of 0.05 was used to gauge the
significance of performance improvements. For the language
modeling retrieval approach, the parameter κ below (5) and
(12) was 1000 in all the experiments6. Frame-based DTW
was used to compute distance d(ri, rj) in (15). The acoustic
features used in speech recognition for the spoken documents
were also used in frame-based DTW (that is, MFCC with
CMVN for Condition (I), and PLP plus phoneme posterior
probabilities for Condition (II)), and Euclidean distance was
taken as the distance measure between two acoustic feature
vectors. A slope constraint was used in the frame-based DTW
to handle speaking rate distortion. With the slope constraint, a
feature sequence can match another sequence whose length is
in a range of 1/µ to µ times the length of the former; µ was
set to 3 in the following experiments [62], [63]. The distance
obtained by the above frame-based DTW in the reference,
d′(ri, rj), is asymmetric; d′(ri, rj) 6= d′(rj , ri). Here d(ri, rj)
in (15) is the average of d′(ri, rj) and d′(rj , ri). For the graph
construction in Section II-C, nodes ri and rj were connected if
ri was among the k-nearest neighbors of rj based on S(ri, rj)
in (15), and if rj was among the k-nearest neighbors of ri
(k = 10 in the experiments). α in (16) was set to 0.5. The
number of iterations I for the EM algorithm in Section IV-A1
was 10 in all the experiments. Unless otherwise specified, all
the other parameters were determined using the development
set. That is, the optimal values for the parameters were based

6This is also the default value of the Lemur Toolkit [61] for the same
smoothing approach.

on the development set, and the same values were applied on
the testing set.

VI. EXPERIMENTAL RESULTS

A. Initial Baselines for Language Modeling Retrieval Ap-
proach

TABLE I: Comparison of MAP performance for the testing
queries yielded by one-best transcriptions (row (1)) and lattices
(row (2)) on Conditions (I) and (II) (Parts (a) and (b)) with
Okapi BM25 (columns labeled “BM25”) or basic language
modeling retrieval approach (columns labeled “LM”). Both
retrieval approaches were based on word unigrams without
document/query expansion. The superscripts ∗ in row (2) in-
dicate performance significantly better than the corresponding
values in row (1), and the superscripts † in the columns
labeled “LM” indicate performance significantly better than
those labeled “BM25” in the same parts.

(a) Condition (I) (b) Condition (II)
BM25 LM BM25 LM

(1) One-best 42.46% 44.91%† 46.42% 49.59%†

(2) Lattice 44.79%∗ 45.68%∗† 48.26%∗ 50.70%∗†

We should first justify the use of the language modeling
retrieval approach as the baseline in this study. Table I com-
pares the results of the testing queries with Okapi BM25 [64]
(columns labeled “BM25”), and language modeling retrieval
approach (columns labeled “LM”) without document/query
expansion. Okapi BM25 is a standard retrieval approach
based on term frequencies, inverse document frequencies, and
document lengths equally useful for text or spoken content
retrieval. All parameters in Okapi BM25 were tuned on the
development set. All results in Table I were based on word
unigrams only; words were used as terms here. Parts (a) and
(b) are respectively the results for Conditions (I) and (II). Row
(1) is the results based on one-best transcriptions. That is, we
computed the term frequencies, inverse document frequencies,
and document lengths based on the one-best transcriptions as
in the text form for Okapi BM25. For the language modeling
retrieval approach, θ̄1bd in (5) of Section II-A was taken
as θd in (1). Row (2) is for lattices. For BM25 in row
(2), the expected term frequencies and expected document
lengths computed based on the lattices were used, but the
inverse document frequencies were computed based on the
one-best transcriptions7. For the language modeling retrieval
approach in row (2), θ̄latd in (12) in Section II-B was used
in (1). The superscripts ∗ in row (2) indicate performance
significantly better than the corresponding values in row (1),
while the superscripts † in the columns labeled “LM” indicate

7To compute the inverse document frequency of a term, we need the number
of documents containing the term. In text retrieval, this number is obtained in a
straightforward way; the same approach is used for the one-best transcriptions.
However, to compute this number on the lattices, we take as containing the
term only those documents with expected frequencies of the term that exceed a
threshold. Intuitively, there seems to be no direct way to decide this threshold.
Therefore, for simplicity, we here only compute inverse document frequencies
on the one-best transcriptions. There are more sophisticated approaches for
estimating the inverse document frequencies based on lattices with training
data [52], but out of the scope of this paper.
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performance significantly better than those labeled “BM25” in
the same parts.

Clearly, the lattice-based results significantly outperformed
those based on one-best transcriptions under both Conditions
(I) and (II), regardless of the retrieval approach (rows (2)
vs (1)). Table I also shows that the language modeling re-
trieval approach is significantly better than Okapi BM25 for
the experimental setup here. Hence, we chose the language
modeling retrieval approach as our basic retrieval approach
here8. With the same retrieval approach, Condition (II) always
yielded much better results than Condition (I) whether one-
best transcriptions or lattices were considered; retrieval per-
formance depends on recognition accuracy. The MAP yielded
by manual transcriptions for the language modeling retrieval
approach here was 62.16%, which was much better than the
results for recognition condition (II) with lattices and language
modeling retrieval approach (62.16% vs 50.70% in Table I).
This observation shows that even given the use of lattices,
recognition errors still led to degraded retrieval performance.
Hence, even with lattices, improved techniques are called for.

B. Presentation of Overall Experimental Results

Tables II and III respectively show the overall experimental
results for the testing queries based on Conditions (I) and
(II), each with the upper half (Part (A)) for results directly
from lattices (θ̄latd in (12) was used) and the lower half
(Part (B)) for the proposed graph-enhanced version (θ̄gd in
(21) was used). For each half, rows (1), (2), and (3) are
respectively for word unigram, character bi-gram, and syllable
bi-gram language models, that is, the terms t used were
words, character bi-grams, and syllable bi-grams9. We further
weighted the relevance scores S(Q, d) in (1) obtained in rows
(1) to (3) and then summed them up to obtain the results in row
(4). The weights for each unit, or each row, were determined
using the development set.

Columns (a), (b), and (c) in Tables II and III respectively
list results for the basic language modeling retrieval approach
without any expansion, with document expansion, and with
utterance-level query expansion. The columns (c-1) and (c-2)
are respectively for term only and for term plus topic. Column
(d) then integrated document expansion with query expansion
(term plus topic). Superscripts α, β , γ , and δ respectively in-
dicate performance significantly better than the corresponding
results in columns (a), (b), (c-1), and (c-2) in the same row.
Due to limited computational resources, we only constructed
the graphs respectively for the 30,000 words, character bi-
grams, and syllable bi-grams with the highest tf-idf scores
computed on the 1-best transcriptions. For those terms without
graphs, we simply set Cg(rt) equal to C(rt) in (19) when
computing θgd . In both Tables II and III, the superscripts ∗ in

8Our intent here is not to claim that the language modeling retrieval
approach is better than Okapi BM25. Although recent work shows that the
language modeling retrieval approach outperforms Okapi BM25 in both text
and speech retrieval [46], [65], evidence that the language modeling retrieval
approach is superior to BM25 is as yet insufficient.

9Word bi-gram was not helpful (even integrated with other units), so we
do not report the results.

the lower halves (Parts (B)) indicate performance significantly
better than the corresponding results in the upper halves (Parts
(A)). Although we only enhanced the top 30,000 terms with
graphs, we still observe encouraging results in the experiments.

C. Discussion on the Basic Language Modeling Approach
without Document/Query Expansion

We now focus on columns (a) of Tables II and III for the
basic language modeling retrieval approach without any doc-
ument or query expansion. We found that the proposed graph-
based enhancement approach always improved the retrieval
performance significantly (parts (B) vs (A) in columns (a)
of Tables II and III). Because the score propagation over the
graphs brought the document language models closer to the
true term distributions in speech, the graph-enhanced language
models led to better results. We also observed that in columns
(a) the results for language models based on character bi-grams
were better than those based on words and syllable bi-grams
(rows (2) vs (1), (3) in columns (a) of Tables II and III).
Language models based on character bi-grams outperformed
words because they handled OOV queries better. For example,
some longer OOV words cannot be correctly recognized, but
part may be correctly transcribed into correct character bi-
grams. Although syllables are also very helpful subword units
(each character is produced as a monosyllable in Mandarin
Chinese), in Mandarin Chinese different characters with differ-
ent meanings often correspond to the same syllable (there are
far fewer syllables than there are characters). Hence, syllable
bi-grams were not as discriminative as character bi-grams
in representing the semantics in the documents, even though
syllable bi-grams also mitigated the OOV problem somewhat.
Moreover, since syllables were not as discriminative as words
and characters, they were more susceptible to recognition
errors (an erroneous syllable may lead to a whole group of
erroneous characters and more than one erroneous word).
Therefore, with higher recognition accuracy (Condition (II)
of Table III), syllable bi-grams and words were comparable
(rows (3) vs (1) in column (a) of Table III), whereas given
poor recognition accuracy (Condition (I) of Table II), syllable
bi-grams were the worst among the three types of terms
(rows (3) vs (1), (2) in column (a) of Table II). Furthermore,
although characters are more discriminative than syllables,
syllables usually have higher accuracies because incorrectly
recognized characters often correspond to correct syllables.
This is why words, character bi-grams, and syllable bi-grams
carry complementary information. Hence, their integration
outperformed them all individually (rows (4) vs (1), (2), (3)
in columns (a) of Tables II and III).

We then analyse the estimation accuracy for θlatd and θgd with
respect to the reference model θrefd . The reference model θrefd

is from the manual transcriptions, where

P (t|θrefd ) =
Nc(t, d)∑
tNc(t, d)

, (41)

where Nc(t, d) is the occurrence counts of the term t in the
manual transcriptions of spoken document d. The results of the
first one hundred spoken documents d in the spoken archive
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TABLE II: Condition (I) MAP performance for the testing queries, with upper (Part (A)) and lower (Part (B)) halves respectively
for results directly from the lattices without and with graph-enhancement. Columns (a), (b), and (c) are respectively for the
basic language modeling retrieval approach without any document or query expansion, with document expansion, and with
utterance-level query expansion. Columns (c-1) and (c-2) are respectively for terms only and for terms plus topics. Document
expansion (column (b)) and query expansion including topic information (column (c-2)) was then integrated in column (d).
Superscripts α, β , γ , and δ respectively indicate performance significantly better than the corresponding results in columns
(a), (b), (c-1), and (c-2) in the same row. Superscript ∗ indicates that the results in Part (B) are significantly better than the
corresponding results in part (A). Rows (1), (2), and (3) are respectively for word unigram, character bi-gram, and syllable
bi-gram language models, that is, the terms t used were words, character bi-grams, and syllable bi-grams respectively in rows
(1), (2), and (3). A weighted sum of the relevance scores obtained in rows (1) to (3) yielded the results in row (4), with the
weights determined on the development set.

(a) (b) (c) Query expansion (utterance-level) (d) Document plus
Condition (I) Basic Document (c-1) (c-2) query expansion

LM expansion Term-based Term+topic-based (b) + (c-2)

(A
)

L
at

tic
e (1): Word 1-gram 45.68% 48.26%α 48.58%α 48.91%α 49.98%αβγδ

(2): Char 2-gram 45.99% 47.02%α 46.94% 46.96% 48.11%αβ

(3): Syl 2-gram 43.32% 45.52%α 44.94%α 45.23%αγ 46.89%αβγδ

(4): (1)+(2)+(3) 48.46% 51.29%α 50.12% 49.63% 52.54%αβγδ

(B
)

G
ra

ph
-

en
ha

nc
ed

(1): Word 1-gram 47.42%∗ 50.01%α 49.10%∗α 50.48%∗αγ 50.51%αβγ

(2): Char 2-gram 48.18%∗ 48.88%∗α 48.19%∗ 48.21%∗γ 49.16%∗α

(3): Syl 2-gram 44.99%∗ 46.79%∗α 46.11%∗α 46.55%∗αγ 47.41%αβγδ

(4): (1)+(2)+(3) 50.38%∗ 52.70%∗α 51.10%∗ 52.71%∗αγ 54.00%∗αβγδ

TABLE III: Condition (II) MAP performance for the testing queries in Table II.

(a) (b) (c) Query expansion (utterance-level) (d) Document plus
Condition (II) Basic Document (c-1) (c-2) query expansion

LM expansion Term-based Term+topic-based (b) + (c-2)

(A
)

L
at

tic
e (1): Word 1-gram 50.70% 53.29%α 52.76%α 53.09%αγ 54.41%αβγδ

(2): Char 2-gram 52.55% 53.58%α 53.10% 53.20% 54.83%αβγδ

(3): Syl 2-gram 50.58% 52.05%α 50.98% 50.96% 52.62%αβγδ

(4): (1)+(2)+(3) 55.11% 56.66%αγ 55.22% 55.65%γ 56.94%αγδ

(B
)

G
ra

ph
-

en
ha

nc
ed

(1): Word 1-gram 52.05%∗ 53.92%∗α 53.91%∗α 54.08%∗α 54.98%αβγδ

(2): Char 2-gram 53.55%∗ 54.50%∗α 54.31%∗α 54.37%∗α 55.15%αβ

(3): Syl 2-gram 51.45%∗ 52.88%α 52.10% 52.62%∗αγ 53.24%αγδ

(4): (1)+(2)+(3) 55.32% 57.23%α 56.04% 56.60%∗γ 57.97%∗αβγδ

on Conditions (I) and (II) are respectively plotted in Figs. 3 (a)
and (b). In Fig. 3, each point represents a word t in a document
d (so we have a total of V times one hundred points in each
figure, where V is the vocabulary size). The x scale of Fig. 3
is the absolute value of the difference between P (t|θlatd ) and
P (t|θrefd ), or |P (t|θlatd )− P (t|θrefd )| (|x| means the absolute
value of x), while the y scale is the absolute value of difference
between P (t|θgd) and P (t|θrefd ), or |P (t|θgd)−P (t|θrefd )|. The
red line is the line of x = y, that is, points for which the
estimation errors of P (t|θlatd ) and P (t|θgd) with respect to
P (t|θrefd ) are identical. The points below the red line are those
having |P (t|θlatd )−P (t|θrefd )| > |P (t|θgd)−P (t|θrefd )|, or the
graph-based enhancement approach yielded better estimation
than lattices; while the points above the red line indicate on
other way. From Figs. 3 (a) and (b), it is clear that there are
much more points below the red lines in both figures. This
shows that the graph-enhancement approach usually provided
more accurate estimation under both conditions.

Table IV shows the KL divergence values for the document

TABLE IV: KL divergence values for the estimated document
language models, either directly from lattices (Part (A)) or with
graph-enhancement (Part (B)), evaluated against the correct
document models, with rows (1), (2), and (3) respectively for
word unigrams, character bi-grams, and syllable bi-grams.

(A) Lattice (B) Graph-enhanced
KL divergence Condition Condition Condition Condition

(I) (II) (I) (II)
(1) Word 1-gram 4.11 3.19 4.06 3.15
(2) Char 2-gram 6.27 4.57 6.20 4.52
(3) Syl 2-gram 3.47 2.91 3.41 2.80

language models obtained directly from lattices (with θ̄latd in
(12) in Part (A)) and those enhanced with graphs (with θ̄gd
in (21) in Part (B)), evaluated against the reference document
models θrefd based on manual transcriptions. The values in
Parts (A) and (B) in Table IV are respectively the average
values of KL(θrefd ||θ̄latd ) and KL(θrefd ||θ̄

g
d) for all documents.

Smaller KL divergence values imply the document models
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Fig. 3: The estimation accuracy of P (t|θlatd ) and P (t|θgd) with
respect to P (t|θrefd ), where θrefd is the reference model from
the manual transcriptions. (a) and (b) are respectively for
Conditions (I) and (II). Each point in the figures is for a word
t in the first one hundred spoken documents d in the spoken
archive. The estimation error of lattice-based language
models |P (t|θlatd )−P (t|θrefd )| is the x scale, while that with
graph-based enhancement approach |P (t|θgd)−P (t|θrefd )| is
the y scale. The red line is the line of x = y.

estimated from spoken documents were closer to those based
on manual transcriptions. We found that the graph-enhanced
language models θ̄gd always yielded smaller KL divergence
values than the original lattice-based models θ̄latd (Parts (B) vs
(A)). This verifies that the proposed approach indeed helped
to mitigate the problem of recognition errors and brought the
estimated document language models closer to the correct
term distributions, and explains why the proposed graph-based
enhancement approach yielded improvements.

D. Document Expansion

Columns (b) in Tables II and III list the results for document
expansion on the testing set, in which the document models
were smoothed using the document-expanded background
model θb(d) in (24) of Section III, but with θlatd in (10)
of Section II-B and θgd in (19) of Section II-C respectively
interpolated with θb(d) in Parts (A) and (B). Here the PLSA

models were learned from the one-best transcriptions, that
is, θ1bd in (3) was taken as θd in (23) of Section III. The
number of PLSA latent topics (K in (22) in Section III) was
determined using the development set. The tables clearly show
that PLSA-based document expansion significantly improved
the retrieval performance for both word and subword-based
language models and under different recognition conditions
(columns (b) vs (a) in Tables II and III).

When comparing Parts (A) and (B) of columns (b) in
Tables II and III, we note that the proposed graph-based
enhancement approach yielded additional improvements for
document expansion in all cases (Parts (B) vs (A) in columns
(b) in Tables II and III). Graph score propagation improved
the scores of the hypothesized regions, yielding better term
distributions for θgb than θlatb to be used as θb when estimating
θb(d) in (24) of Section III. This better background model θb(d)
is then further used to smooth the better document model θgd
than the original model θlatd , which led to the improvements
observed here. Moreover, we found that integrating the results
of word-, character-, and syllable-based language models al-
ways improved the results for document expansion whether or
not the graph-based approach was applied (rows (4) vs (1), (2),
(3) in Parts (A) and (B) of columns (b) in Tables II and III).

Fig. 4: An example illustrating the influence of different
numbers of PLSA latent topics (K = 16, 32, 64, 128) for
document expansion on the development set. The results in
this figure were based on word unigrams; the lattices were
generated under Condition (I).

Fig. 4 is an example illustrating the influence of the numbers
of PLSA latent topics (K = 16, 32, 64, 128) for document
expansion on the development set. Only the results based on
word unigrams with lattices generated in Condition (I) were
reported in Fig. 4. Similar phenomena were observed in all
other cases. The curves labeled “Basic LM” and “Document
Expansion” are respectively the results without and with
document expansion. Since “Basic LM” did not utilize latent
topics, its results did not depend on the number of PLSA latent
topics. The curves labeled “Lattice” and “Graph-Enhanced”
were respectively the results based on lattices and further
enhanced by the graph-based approach. We can see from
this figure that document expansion improved retrieval perfor-
mance regardless of the number of latent topics (“Document
Expansion” vs “Basic LM” in Fig. 4). Taking the results
without and with the graph-based enhancement approach, we
also see the proposed approach improved the performance
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regardless of the number of latent topics (“Lattice” vs “Graph-
Enhanced” in Fig. 4). We also find that a too large number
of latent topics (K = 128) yielded lower improvements from
document expansion. Obviously because when K is too large,
some semantically related terms may be belonged to different
latent topics.

E. Query Expansion

TABLE V: MAP performance yielded by document-level
(column (b-1)) and utterance-level (column (b-2)) term-based
query expansion on the testing set compared with the basic
language modeling approach (column (a)), all with word
unigram only for Conditions (I) and (II). The superscripts α

and β respectively indicate performance significantly better
than the corresponding results in columns (a) and (b-1).

(a) (b) Term-based query expansion
Basic (b-1) (b-2)
LM Document-level Utterance-level

Condition (I) 45.68% 46.46%α 48.58%αβ

Condition (II) 50.70% 51.19%α 52.76%αβ

For query expansion, we first compare the document-level
and utterance-level term-based query expansion on the testing
set using the language models obtained from the original
lattices for word unigram only. The number of pseudo-relevant
documents M in Section IV and the parameter ρ in (28) and
(32) were all determined using the development set. Table V
reports the MAP results. Column (a) is the results of the basic
language modeling approach (same as rows (1) of Parts (A)
and columns (a) in Tables II and III). Columns (b-1) and (b-
2) are for term-based query expansion in Section IV-A. The
pseudo-relevant documents used for query expansion were
taken from the first-pass results based on θ̄latd in (12) of
Section II-B (those for column (a) of this table). Columns (b-1)
and (b-2) are respectively for term-based query expansion on
document and utterance levels as in Section IV-A1 and IV-A2.
In column (b-1), the expanded new query model θ′Q was
obtained in (28), and θlatd in (10) and θlatb in (11) were taken as
θdm in (26) and θb in (25); in column (b-2), θ′Q was obtained
by (32), and θb in (34) was still θlatb , but θxj in (33) was
the language model for utterance xj . The superscripts α and
β in columns (b-1) and (b-2) of Table V respectively indi-
cate performance significantly better than columns (a) (basic
language modeling approach) and (b-1) (document-level query
expansion). We found both document-level and utterance-level
term-based query expansion significantly outperformed the
baselines (columns (b-1), (b-2) vs (a)), and the utterance-level
approach extended in this paper was significantly better than
document-level in all cases (columns (b-2) vs (b-1)). Because
it is natural that different utterances in the same document have
different degrees of relevance with respect to the queries, the
fact that utterance-level query expansion offers better results is
intuitive. Since utterance-level query expansion is better, in the
following discussions, only utterance-level query expression is
considered.

Now we return to Tables II and III but concentrate on
columns (c-1) for utterance-level term-based query expansion.

The results using the basic language modeling retrieval ap-
proach in columns (a) in the same row of the same table
were taken as the first-pass results for defining the pseudo-
relevant documents for query expansion. Columns (c-1) are
for term-based θ′Q estimated by (32). We found that utterance-
level term-based query expansion outperformed the baseline
language modeling retrieval approach without expansion in
all cases (columns (c-1) vs (a) in Tables II and III). We also
observe that query expansion was not very effective in some
cases (for example, column (c-1) in row (2) in part (B) of
Table II). Because the query models were estimated from
pseudo-relevant documents corrupted with recognition errors,
this estimation did not necessarily provide high quality query
models.

Now we compare Parts (A) and (B) for columns (c-1) in
Tables II and III for query expansion without and with graph-
based enhancement. Here the expanded query model θ′Q and
θ′′Q for columns (c-1) were matched against θ̄latd in (12) of
Section II-B and θ̄gd in (21) of Section II-C respectively in
Parts (A) and (B). The graph-based enhancement improved
query expansion in all cases (parts (B) vs (A) in columns
(c-1) in Tables II and III). The improvements were achieved
by two factors. First, here the results of columns (a) in the
same rows were taken as the first-pass retrieved results, which
improved with graph-based enhancement and thereby included
more relevant documents in the pseudo-relevant document set.
Second, when matching the expanded query model θ′Q against
the document models, the document model θ̄gd obtained with
graph-based enhancement was better than θ̄latd .

Fig. 5: An example (word unigram under condition (I))
utterance-level term-based query expansion for different num-
bers of pseudo-relevant documents M (M = 5, 10, 15, 20, 25)
and different values of ρ in (32) (ρ = 5, 50) on the develop-
ment set. The dashed and dotted curves are respectively the
results without and with graph-based enhancement.

Fig. 5 is an example illustrating the influence of the number
of pseudo-relevant documents M and the value of parameter
ρ in (32) for utterance-level term-based query expansion on
the development set with word unigrams in Condition (I).
Similar phenomena were also observed in all other cases.
The solid line (labeled “Basic LM”) is the results without
query expansion. The dashed curves (labeled “Lattice”) are the
results of utterance-level term-based query expansion based on
lattices, while the dotted curves (labeled “Graph-Enhanced”)
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are those with graph-based enhancement, all as functions of
the parameter M . Parameter ρ controlled the influence of the
prior function; a smaller ρ means the expanded queries were
less similar to the original queries, or the M pseudo-relevant
documents had more influence on the expanded queries. In
Fig. 5, a smaller ρ (ρ = 5) yielded better results, but perfor-
mance decreased seriously for large values of M (M = 25).
Because larger values of M led to more documents in the first-
pass retrieval results (some of which may not be relevant) were
considered as pseudo-relevant in the query expansion process,
for smaller values of ρ, these noisy pseudo-relevant documents
had more influence, thus degrading the performance of query
expansion. When ρ was large (ρ = 50), however, the results
were insensitive to M , but since the expanded queries were
more similar to the original ones, query expansion yielded
only limited improvements. On the other hand, it is clear that
given fixed values for M and ρ, the proposed graph-based
enhancement approach improved the performance of query
expansion in all cases.

F. Topic-based Query Expansion

Columns (c-2) in Tables II and III are for integrated term-
based and topic-based query expansion in Section IV-B, or
with θ′′Q in (40). Parameter δ in (40) was decided using the
development set. We did not tune the number of PLSA latent
topics K, the number of pseudo-relevant documents M , or
parameter ρ in (35) for topic-based query expansion. Instead,
we set the values of K to be the same values used in the
document expansion (column (b)) of the same row in Tables II
and III, and the values of M and ρ to be the same values used
in the term-based query expansion (column (c-1)). Comparing
columns (c-2) and (c-1), we find that using topic-based query
expansion in addition (θ′′Q in (40) in Section IV-B) offered
extra improvements as compared to the original term-based
version (θ′Q in Section IV-A), with two exceptions: columns
(c-2) vs (c-1) in row (4) in part (A) of Table II and in row (3)
in part (A) of Table III. Although the improvements obtained
were not large, most were significant (those with superscript
γ). This implies that the latent topic information was helpful
for query expansion in most cases, although it can induce
undesired noisy terms.

G. Query Expansion plus Document Expansion

Since document and query expansion use different mecha-
nisms to take into account semantics, we were interested to
see if their improvements were additive. The results are in
columns (d) of Tables II and III, for which both document
and query models in (1) were expanded. In the experiments,
the results in columns (b) with document expansion were
taken as the first pass to obtain the pseudo-relevant documents,
which included more relevant documents than the results in
columns (a) because of the help of document expansion, and
the estimated new query model θ′′Q (in (40) in Section IV-B)
was matched against the document model smoothed by the
document-expanded background model θb(d). The values of
all parameters were set to be the same values used in the

document expansion (column (b)), term-based query expan-
sion (column (c-1)), and topic-based query expansion (column
(c-2)) of the same row in Tables II and III. From columns
(d), we find that applying document and query expansion
jointly outperformed the individual approaches (columns (d)
vs (b), (c-1), (c-2)). In addition, the proposed graph-based
enhancement also yielded extra improvements even with the
joint application of query and document expansion (Parts (B)
vs (A) in columns (d) in Tables II and III).

VII. CONCLUSION

To improve the semantic retrieval of spoken content, we
here proposed using acoustic similarity graphs to estimate
more accurate term distributions for language modeling for
the spoken documents. The spoken document language models
thus enhanced were then applied on the language modeling
retrieval approach, document expansion, and various versions
of query expansion. Improved performance for the proposed
approach was observed in two different recognition conditions
on a corpus of broadcast news in Mandarin Chinese. The
proposed approaches were also shown to be equally applied
to document models based on different term granularities
including words, character bi-grams, and syllable bi-grams for
Mandarin Chinese. Moreover, both document expansion based
on topic analysis and query expansion based on the query-
regularized mixture model were shown helpful, and informa-
tion from different term granularities were fused to offer better
performance. Finally, by integrating the proposed approach
with all the techniques, including document expansion, query
expansion, and the fusion of the information from different
term granularities, we achieved an improvement of 20.2%
relative over the baseline using one-best word sequences (from
44.91% to 54.00% in terms of MAP) for the lower character
accuracy condition (Condition (I) in Section V), and 16.9%
relative over the baseline (from 49.59% to 57.97%) for the
higher accuracy condition (Condition (II) in Section V).
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spoken content,” in IEEE Signal Processing Magazine 25(3), pp. 39-49,
2008.

[3] L.-S. Lee and B. Chen, “Spoken document understanding and organiza-
tion,” Signal Processing Magazine, IEEE, vol. 22, pp. 42 – 60, 2005.

[4] M. Saraclar and R. Sproat, “Lattice-based search for spoken utterance
retrieval,” in HLT-NAACL, 2004.

[5] C. Chelba, J. Silva, and A. Acero, “Soft indexing of speech content
for search in spoken documents,” Comput. Speech Lang., vol. 21, pp.
458–478, 2007.

[6] C. Chelba and A. Acero, “Position specific posterior lattices for indexing
speech,” in ACL, 2005.

[7] Y.-C. Pan, H.-L. Chang, and L.-S. Lee, “Analytical comparison between
position specific posterior lattices and confusion networks based on
words and subword units for spoken document indexing,” in ASRU,
2007.

[8] T. Hori, I. L. Hetherington, T. J. Hazen, and J. Glass, “Open vocabulary
spoken utterance retrieval using confusion networks,” in ICASSP, 2007.

[9] C. Allauzen, M. Mohri, and M. Saraclar, “General indexation of
weighted automata: application to spoken utterance retrieval,” in Pro-
ceedings of the Workshop on Interdisciplinary Approaches to Speech
Indexing and Retrieval at HLT-NAACL, 2004.



15

[10] C. Liu, D. Wang, and J. Tejedor, “N-gram FST indexing for spoken term
detection,” in Interspeech, 2012.

[11] B. Logan, P. Moreno, J.-M. Van Thong, and E. Whittaker, “An experi-
mental study of an audio indexing system for the web,” in ICSLP, 2000.

[12] M. Akbacak, D. Vergyri, and A. Stolcke, “Open-vocabulary spoken term
detection using graphone-based hybrid recognition systems,” in ICASSP,
2008.

[13] Y.-C. Pan, H.-L. Chang, and L.-S. Lee, “Subword-based position spe-
cific posterior lattices (S-PSPL) for indexing speech information,” in
Interspeech, 2007.

[14] B. Logan, J.-M. Van Thong, and P. Moreno, “Approaches to reduce the
effects of OOV queries on indexed spoken audio,” Multimedia, IEEE
Transactions on, vol. 7, pp. 899 – 906, 2005.

[15] R. Wallace, R. Vogt, and S. Sridharan, “A phonetic search approach to
the 2006 NIST spoken term detection evaluation,” in Interspeech, 2007.

[16] V. T. Turunen, “Reducing the effect of OOV query words by using
morph-based spoken document retrieval,” in Interspeech, 2008.

[17] V. T. Turunen and M. Kurimo, “Indexing confusion networks for morph-
based spoken document retrieval,” in SIGIR, 2007.

[18] D. Wang, J. Frankel, J. Tejedor, and S. King, “A comparison of phone
and grapheme-based spoken term detection,” in ICASSP, 2008.

[19] Y. Itoh, K. Iwata, K. Kojima, M. Ishigame, K. Tanaka, and S.-W. Lee,
“An integration method of retrieval results using plural subword models
for vocabulary-free spoken document retrieval,” in Interspeech, 2007.

[20] A. Garcia and H. Gish, “Keyword spotting of arbitrary words using
minimal speech resources,” in ICASSP, 2006.

[21] K. Ng, “Subword-based approaches for spoken document retrieval,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2000.

[22] S.-W. Lee, K. Tanaka, and Y. Itoh, “Combining multiple subword repre-
sentations for open-vocabulary spoken document retrieval,” in ICASSP,
2005.

[23] S. Meng, P. Yu, J. Liu, and F. Seide, “Fusing multiple systems into a
compact lattice index for Chinese spoken term detection,” in ICASSP,
2008.

[24] Y.-C. Pan, H.-Y. Lee, and L.-S. Lee, “Interactive spoken document
retrieval with suggested key terms ranked by a Markov decision process,”
Audio, Speech, and Language Processing, IEEE Transactions on, vol. 20,
pp. 632 –645, 2012.

[25] S. Parlak and M. Saraclar, “Spoken information retrieval for Turkish
broadcast news,” in SIGIR, 2009.

[26] S.-Y. Kong, M.-R. Wu, C.-K. Lin, Y.-S. Fu, and L.-S. Lee, “Learning
on demand - course lecture distillation by information extraction,” in
ICASSP, 2009.

[27] J. Glass, T. J. Hazen, S. Cyphers, I. Malioutov, D. Huynh, and R. Barzi-
lay, “Recent progress in the MIT spoken lecture processing project,” in
Interspeech, 2007.

[28] J. H. L. Hansen, R. Huang, P. Mangalath, B. Zhou, M. Seadle, and
J. R. Deller, “SPEECHFIND: Spoken document retrieval for a national
gallery of the spoken word,” 2004.

[29] M. Goto, J. Ogata, and K. Eto, “Podcastle: A web 2.0 approach to speech
recognition research,” in Interspeech, 2007.

[30] C. Alberti, M. Bacchiani, A. Bezman, C. Chelba, A. Drofa, H. Liao,
P. Moreno, T. Power, A. Sahuguet, M. Shugrina, and O. Siohan, “An
audio indexing system for election video material,” in ICASSP, 2009.

[31] H.-Y. Lee, T.-H. Wen, and L.-S. Lee, “Improved semantic retrieval of
spoken content by language models enhanced with acoustic similarity
graph,” in SLT, 2012.

[32] T.-W. Tu, H.-Y. Lee, Y.-Y. Chou, and L.-S. Lee, “Semantic query
expansion and context-based discriminative term modeling for spoken
document retrieval,” in ICASSP, 2012.

[33] H.-L. Chang, Y.-C. Pan, and L.-S. Lee, “Latent semantic retrieval of
spoken documents over position specific posterior lattices,” in SLT, 2008.

[34] B. Chen, K.-Y. Chen, P.-N. Chen, and Y.-W. Chen, “Spoken document
retrieval with unsupervised query modeling techniques,” Audio, Speech,
and Language Processing, IEEE Transactions on, vol. 20, pp. 2602 –
2612, 2012.

[35] X. Hu, R. Isotani, H. Kawai, and S. Nakamura, “Cluster-based language
model for spoken document retrieval using NMF-based document clus-
tering,” in Interspeech, 2010.

[36] T. Akiba and K. Honda, “Effects of query expansion for spoken
document passage retrieval,” in Interspeech, 2011.

[37] R. Masumura, S. Hahm, and A. Ito, “Language model expansion using
webdata for spoken document retrieval,” in Interspeech, 2011.

[38] H. Nishizaki, K. Sugimotoy, and Y. Sekiguchi, “Web page collection
using automatic document segmentation for spoken document retrieval,”
in APSIPA, 2011.

[39] S. Tsuge, H. Ohashi, N. Kitaoka, K. Takeda, and K. Kita, “Spoken
document retrieval method combining query expansion with continuous
syllable recognition for NTCIR-SpokenDoc,” in Proceedings of the
Ninth NTCIR Workshop Meeting, 2011.

[40] X. Wei and W. B. Croft, “LDA-based document models for ad-hoc
retrieval,” in SIGIR, 2006.

[41] Q. Wang, J. Xu, H. Li, and N. Craswell, “Regularized latent semantic
indexing,” in SIGIR, 2011.

[42] D. Metzler and W. B. Croft, “Latent concept expansion using Markov
random fields,” in SIGIR, 2007.

[43] T. Tao and C. Zhai, “Regularized estimation of mixture models for robust
pseudo-relevance feedback,” in SIGIR, 2006.

[44] V. Lavrenko and W. B. Croft, “Relevance-based language models,” in
SIGIR, 2001.

[45] Y. Lv and C. Zhai, “A comparative study of methods for estimating
query language models with pseudo feedback,” in Proceedings of the
18th ACM conference on Information and knowledge management, ser.
CIKM ’09, 2009.

[46] T. K. Chia, K. C. Sim, H. Li, and H. T. Ng, “Statistical lattice-based
spoken document retrieval,” ACM Trans. Inf. Syst., vol. 28, pp. 2:1–2:30,
2010.

[47] H.-Y. Lee, P.-W. Chou, and L.-S. Lee, “Open-vocabulary retrieval of
spoken content with shorter/longer queries considering word/subword-
based acoustic feature similarity,” in Interspeech, 2012.

[48] H.-Y. Lee, Y.-N. Chen, and L.-S. Lee, “Improved speech summarization
and spoken term detection with graphical analysis of utterance similar-
ities,” in APSIPA, 2011.

[49] Y.-N. Chen, C.-P. Chen, H.-Y. Lee, C.-A. Chan, and L.-S. Lee, “Im-
proved spoken term detection with graph-based re-ranking in feature
space,” in ICASSP, 2011.

[50] C. Zhai, “Statistical language models for information retrieval a critical
review,” Found. Trends Inf. Retr., vol. 2, pp. 137–213, 2008.

[51] C. Zhai and J. Lafferty, “A study of smoothing methods for language
models applied to ad hoc information retrieval,” in SIGIR, 2001.

[52] D. Karakos, M. Dredze, K. Church, A. Jansen, and S. Khudanpur,
“Estimating document frequencies in a speech corpus,” in ASRU, 2011.

[53] H.-Y. Lee, C.-P. Chen, C.-F. Yeh, and L.-S. Lee, “Improved spoken term
detection by discriminative training of acoustic models based on user
relevance feedback,” in Interspeech, 2010.

[54] H.-Y. Lee, C.-P. Chen, and L.-S. Lee, “Integrating recognition and
retrieval with relevance feedback for spoken term detection,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 20, pp.
2095 –2110, 2012.

[55] A. Norouzian, A. Jansen, R. Rose, and S. Thomas, “Exploiting discrim-
inative point process models for spoken term detection,” in Interspeech,
2012.

[56] A. N. Langville and C. D. Meyer, “A survey of eigenvector methods for
web information retrieval,” SIAM Rev., vol. 47, pp. 135–161, 2005.

[57] T. Hofmann, “Probabilistic latent semantic analysis,” in Proc. of Uncer-
tainty in Artificial Intelligence, 1999.

[58] A. Atreya and C. Elkan, “Latent semantic indexing (LSI) fails for TREC
collections,” SIGKDD Explor. Newsl., vol. 12, pp. 5–10, 2011.

[59] H. M. Wang, B. Chen, J. W. Kuo, and S. S. Cheng, “MATBN:
a Mandarin Chinese broadcast news corpus,” in Comput. Linguistics
Chinese Language Process., 2005, pp. 219 – 236.

[60] J. S. Garofolo, C. G. P. Auzanne, and E. M. Voorhees, “The TREC
spoken document retrieval track: A success story,” in Text Retrieval
Conference (TREC) 8, 2000.

[61] http://www.lemurproject.org/lemur/retrieval.php.
[62] C.-A. Chan and L.-S. Lee, “Unsupervised spoken term detection with

spoken queries using segment-based dynamic time warping,” in Inter-
speech, 2010.

[63] ——, “Model-based unsupervised spoken term detection with spoken
queries,” Audio, Speech, and Language Processing, IEEE Transactions
on, vol. 21, pp. 1330–1342, 2013.

[64] K. S. Jones, S. Walker, and S. E. Robertson, “A probabilistic model
of information retrieval: Development and comparative experiments,” in
Information Processing and Management, 2000.

[65] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008, ch. 12, pp. 248 –
250.



16

Hung-yi Lee, was born in 1986. He received the
M.S. and Ph.D. degrees in communication engi-
neering from National Taiwan University (NTU),
Taipei, Taiwan, in 2010 and 2012, respectively.
From September 2012 to August 2013, he was a
postdoctoral fellow in Research Center for Informa-
tion Technology Innovation, Academia Sinica. He
is currently visiting the Spoken Language Systems
Group of MIT Computer Science and Artificial In-
telligence Laboratory (CSAIL). His research focuses
on spoken content retrieval and spoken document

summarization.

Lin-shan Lee, (F3) received the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA.

He has been a Professor of electrical engineer-
ing and computer science at the National Taiwan
University, Taipei, Taiwan, since 1982 and holds a
joint appointment as a Research Fellow of Academia
Sinica, Taipei. His research interests include digital
communications and spoken language processing.
He developed several of the earliest versions of
Chinese spoken language processing systems in the

world including text-to-speech systems, natural language analyzers, dictation
systems, and voice information retrieval systems.

Dr. Lee was Vice President for International Affairs (1996-1997) and the
Awards Committee chair (1998-1999) of the IEEE Communications Society.
He was a member of the Board of International Speech Communication
Association (ISCA 2002-2009), a Distinguished Lecture (2007-2008) and a
member of the Overview Paper Editorial Board (since 2009) of the IEEE
Signal Processing Society, and the general chair of ICASSP 2009 in Taipei.
He is a fellow of ISCA since 2010, and received the Meritorious Service
Award from IEEE Signal Processing Society in 2011.


