
RHYTHM-FLEXIBLE VOICE CONVERSION WITHOUT PARALLEL DATA USING
CYCLE-GAN OVER PHONEME POSTERIORGRAM SEQUENCES

Cheng-chieh Yeh1, Po-chun Hsu1, Ju-chieh Chou1, Hung-yi Lee1, Lin-shan Lee1

1College of Electrical Engineering and Computer Science, National Taiwan University
{r06942067, b03901071, r06922020, hungyilee}@ntu.edu.tw, lslee@gate.sinica.edu.tw

ABSTRACT

Speaking rate refers to the average number of phonemes
within some unit time, while the rhythmic patterns refer to
duration distributions for realizations of different phonemes
within different phonetic structures. Both are key compo-
nents of prosody in speech, which is different for different
speakers. Models like cycle-consistent adversarial network
(Cycle-GAN) and variational auto-encoder (VAE) have been
successfully applied to voice conversion tasks without par-
allel data. However, due to the neural network architectures
and feature vectors chosen for these approaches, the length
of the predicted utterance has to be fixed to that of the in-
put utterance, which limits the flexibility in mimicking the
speaking rates and rhythmic patterns for the target speaker.
On the other hand, sequence-to-sequence learning model was
used to remove the above length constraint, but parallel train-
ing data are needed. In this paper, we propose an approach
utilizing sequence-to-sequence model trained with unsuper-
vised Cycle-GAN to perform the transformation between the
phoneme posteriorgram sequences for different speakers. In
this way, the length constraint mentioned above is removed
to offer rhythm-flexible voice conversion without requiring
parallel data. Preliminary evaluation on two datasets showed
very encouraging results.

Index Terms— voice conversion, sequence-to-sequence
learning, unsupervised learning, cycle-gan

1. INTRODUCTION

Voice conversion (VC) is a task aiming to convert the speech
signals from a certain acoustic domain to another while keep-
ing the linguistic content the same. Examples of considered
acoustic domains include not only the speaker identity, but
many other factors orthogonal to the linguistic content such
as speaking style, speaking rate [1], noise condition, emo-
tion [2, 3], accent [4], etc., with potential applications ranging
from speech enhancement [5, 6], computer-assisted pronun-
ciation training for non-native language learner [4], speaking
assistance [7], to speaker identity conversion [8, 9, 10, 11], to
name a few.

When speaker identity conversion is considered, in ad-
dition to the fact that the same phoneme sounds different
when produced by different speakers, it is well known that
the prosody can also be very different for different speakers.
The prosody of speech includes not only the pitch range,
but at least the speaking rate and the rhythmic patterns.
While speaking rate refers primarily to the average number
of phonemes produced within some unit time, the rhythmic
pattern refers to the duration distributions for realizations of
different phonemes within different phonetic structures. It is
obvious that the speaking rate and rhythmic patterns are very
different for different speakers. When the goal is to mimic
the voice characteristics of a specific speaker, it is important
that the prosody including the speaking rate and the rhythmic
patterns of the target speaker is reproduced. This is why flex-
ible speaking rates and rhythmic patterns are highly desired
for voice conversion (VC).

The many approaches proposed for VC may be in most
cases classified into two types: text-independent and text-
dependent. Text-independent VC directly predicts the target
speech signals based on the source speech signals without
considering the linguistic content or text. This is usually
achieved with acoustic models such as Gaussian mixture
models (GMMs) [8, 12] or deep neural networks (DNNs) [13].
Text-dependent VC, on the other hand, converts speech sig-
nals through the textual information. That is, a speech rec-
ognizer is used to estimate the textual information from the
source speech and a speech synthesizer is used to predict
the target speech from the textual information. The con-
version units for text-dependent VC are usually rougher
(e.g., phonemes, characters or words) than those used in
text-independent VC (e.g., frames). Approaches recently
proposed using phoneme posteriorgram vectors as the con-
version unit [14, 15] may be considered as a compromise
between the two, because the posteriorgram probabilities
for all possible phonemes in the source speech signals are
estimated, converted and used to generate the target speech
signals frame by frame.

Typically, text-independent VC requires parallel data.
In other words, the data of utterance pairs produced by the
source and target speakers for the same sentences are needed
to train the conversion model. But recently, methods based

on deep learning using only non-parallel data have been pro-
posed [16, 17, 18]. However, in these approaches due to
the limitations of the conversion models or acoustic features
used, the utterance length before and after conversion has to
be kept the same, so the goal of reproducing the speaking rate
and rhythmic patterns of the target speaker is simply impos-
sible to realize. Sequence-to-sequence learning performed
on phoneme posteriorgram sequences may be a possible ap-
proach to achieve the above mentioned goal [19], but all such
approaches reported so far required parallel data. In this
paper, we propose a rhythm-flexible VC approach produc-
ing target speech signals of variable length but trained with
non-parallel data only.

Below in subsection 2.1, we first introduce the related
works on text-independent VC using deep learning trained
with non-parallel data and the associated length constraint.
We then show in subsection 2.2 a primarily text-dependent
approach using sequence-to-sequence model to transform be-
tween source and target speakers over the phoneme poste-
riorgram sequences, which overcame the problem of length
constraint but required parallel data. In section 3, we there-
fore present the approach proposed here in this paper using
non-parallel data but overcoming the length constraint to offer
rhythm-flexible VC. We list model architectures and imple-
mentation for this proposed approach in section 4, and show
experimental results with evaluations in section 5. Finally, we
make some discussions and concluding remarks in section 6.

2. RELATED WORK

2.1. Non-parallel VC using Deep Learning

Recently, deep generative models such as Variational Autoen-
coders (VAEs) [20] and Generative Adversarial Networks
(GANs) [21] including Conditional GANs (CGANs) [22]
were broadly studied because they can be applied to unsuper-
vised learning problems. This is specially attractive for VC
because that implies parallel data may not be needed. With
VAEs, the encoder first extracts a latent feature representing
the speaker-independent linguistic content, and then the de-
coder is trained to generate the voice of the target speaker
conditioned on the latent feature and some extra informa-
tion regarding the target speaker [16, 17, 23]. With CGANs,
with the guidance of the discriminator, the conditional gen-
erator tries to generate acoustic features sounding like being
produced by the target speaker conditioned on the acoustic
features produced by the source speaker. Among the many
extensions of CGANs, cycle-consistent adversarial network
(Cycle-GAN) [24] and Star-GAN [25] have been very suc-
cessfully used as domain translators between the source and
target domains, and have been used for VC [18, 26, 27, 28].

Although the above approaches are able to perform voice
conversion without parallel data, the length of the generated
signals are locked to be the same as that of the input signals

due to the neural network architectures or the acoustic fea-
tures used. For example, some of them used combinations of
recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) [16, 17, 23] rather then the sequence-to-
sequence encoder-decoder architecture. These methods took
a single frame or a segment of frames (e.g. 128 frames) as
the input, and then generated a single frame or a segment
of frames with the same length as the output. Some other
approaches chose Mel-cepstral coefficients (MCEPs), loga-
rithmic fundamental frequency (log F0), and aperiodicities
(APs) as the features, but the conversion was performed on
MCEPs only [18, 28]. The converted MCEPs have to be of
the same length as the original ones in order to be aligned with
the sequences of log F0 and APs when synthesizing back to
the waveform. This fixed-length constraint makes it impos-
sible for these very attractive deep learning approaches not
requiring parallel data to be rhythm-flexible to better catch
the prosody of the target speaker.

2.2. Sequence-to-sequence Conversion over Posterior-
gram Sequences Trained with Parallel Data

An approach utilizing Recurrent Neural Networks (RNNs)
encoder-decoder for sequence-to-sequence learning [29]
transforming the phoneme posteriorgram sequences between
different speakers that can overcome the length constraint
mentioned above was proposed [19]. In this approach, in
addition to a speech recognizer to produce the phoneme
posteriorgram sequences and a speech synthesizer to recon-
struct the signals, a module for transformation between the
phoneme posteriorgram sequences for the source and tar-
get speakers was added in between to perform VC. This
latter transformation module includes an RNN encoder and
an RNN decoder operating frame by frame. The end-of-
sequence token <EOS> produced at the RNN decoder at
any time removed the length constraint mentioned above and
offered more flexible rhythm for the output speech. However,
the supervised training for sequence-to-sequence learning re-
quires parallel data. This leads to the new approach proposed
in this paper, which offers rhythm-flexible VC with variable
length but doesn’t require parallel data, as is presented below.

3. PROPOSED APPROACH

The approach proposed here successfully overcomes the
length constraint mentioned in subsection 2.1 and removes
the need for parallel data mentioned in subsection 2.2 by
adopting Cycle-GAN, which is an unsupervised style transfer
model capable of transforming the phoneme posteriorgram
sequences between speakers. The three components of the
approach is respectively presented in subsections 3.1, 3.2,
and 3.3 and Figure 1 (a)(b)(c), the Cycle-GAN in subsec-
tion 3.4 and Figure 2, while the overview of the whole VC
process is in Figure 3.

PPR(⋅)

Mel-scale
spectrogram

Phoneme posteriorgram sequence

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

PPTS(⋅)

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

Log-magnitude
spectrogram

Phoneme posteriorgram sequence

Griffin-Lim

Speech
Waveform

UPPTDecoder

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

Source domain
phoneme posteriorgram sequence

Target domain
phoneme posteriorgram sequence

UPPTEncoder

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

(a) (c)

(b)

= PPR(x)p̂ x

= [, ,⋯ ,]x
⎯⎯⎯

x
⎯⎯⎯

1 x
⎯⎯⎯

2 x
⎯⎯⎯

Tx

= PPR(x)p̂ x

Close to = PPR(y)p̂ y

x = [, ,⋯ ,]x1 x2 xTx

= PPR(x)p̂ x

Fig. 1. The three components of the proposed approach.
PPR(·) in (a) stands for Phoneme Posteriorgram Recognizer
and PPTS(·) in (b) for Phoneme-Posteriorgram-to-Speech
Synthesizer. UPPT in (c) stands for Unsupervised Phoneme
Posteriorgram Transformer, which includes an encoder and a
decoder. Dotted red arrows around the UPPT decoder indi-
cates the output at the previous time index is used as the input
at the next time index. The green arrow indicates the final
state of the encoder is fed to the initial state of the decoder.

3.1. Phoneme Posteriorgram Recognizer

As in Figure 1 (a), let x = [x1, x2, · · · , xTx
] and y =

[y1, y2, · · · , yTy
] be the acoustic feature vector sequences

from the source and target speaker domains, xt and yt be the
feature vector at time index t, and Tx and Ty be the lengths
of x and y. In Figure 1 (a), x and y are the Mel-scale spectro-
gram. Also, lx = [lx1 , l

x
2 , · · · , lxTx

] and ly = [ly1 , l
y
2 , · · · , l

y
Ty

]
are the ground truth label phoneme sequences correspond-
ing to x and y, respectively. Phoneme Posteriorgram Rec-
ognizer PPR(·) is a speaker-independent neural network
that estimates the phoneme posterior probabilities frame by
frame given an acoustic feature vector sequence. This recog-
nizer PPR(·) is trained to minimize Lxent(l

x, PPR(x)) and
Lxent(l

y, PPR(y)), which are the cross-entropy between the
ground truth label sequences (an one-hot vector for each time
t) and the estimated phoneme posteriorgram sequences for
data in both source and target speaker domains.

3.2. Phoneme-Posteriorgram-to-Speech Synthesizer

As in Figure 1 (b), Phoneme-Posteriorgram-to-Speech Syn-
thesizers PPTSx(·) and PPTSy(·) are the reverse process
of PPR(·) for data in the source and target speaker domains
respectively, or two neural networks that predict the speech

feature vectors x̄ and ȳ frame by frame given the phoneme
posteriorgram sequences p̂x = PPR(x) and p̂y = PPR(y).
In Figure 1 (b), x̄ and ȳ are the log-magnitude version of x
and y. Griffin-Lim is the algorithm synthesizing the speech
waveform from the predicted log-magnitude version x̄ and
ȳ [30]. PPTSx(·) and PPTSy(·), are respectively trained
to minimize the mean squared error between the ground
truth speech feature vectors and the reconstructed version,
Lmse(x̄, PPTSx(p̂x)) and Lmse(ȳ, PPTSy(p̂y)).

3.3. Unsupervised Phoneme Posteriorgram Transformer

As shown in Figure 1 (c), the Unsupervised Phoneme Posteri-
orgram Transformer UPPT is an attention-based sequence-
to-sequence model including an UPPT encdoer and an
UPPT decoder, which transforms a source domain posteri-
orgram sequence p̂x = PPR(x) into another posteriorgram
sequence very close to those for signals in the target domain,
p̂y = PPR(y). The green arrow indicates the final state
of the encoder is fed to the initial state of the decoder, and
the dotted red arrows around the UPPT decoder indicate
the output of the previous time index is used as the input at
the next time index. This is a sequence-to-sequence model
used to remove the length constraint and achieve the rhythm-
flexible VC mentioned previously.

3.4. Cycle-GAN

Let X and Y be the two sets that contain all estimated
phoneme posteriorgram sequences p̂x, p̂y from the source
and target speaker domains respectively. We adopt here
the cycle-consistent generative adversarial network (Cycle-
GAN) to learn the mapping between X and Y without paired
data. As shown in Figure 2, the whole training procedure
includes two sets of generative adversarial networks (GANs),
each with a generator and a discriminator. After Cycle-GAN
training, two generators, GX→Y and GY→X are obtained.
These two generators are two transformers (UPPT s in sub-
section 3.3) that transform p̂x to p̂x→y (p̂x→y = GX→Y (p̂x))
and p̂y to p̂y→x (p̂y→x = GY→X(p̂y)) respectively, where
p̂x→y is a phoneme posteriorgram sequence mapped from the
source domain to target domain and p̂y→x vice versa. Two
discriminators are also trained, DXand DY , to discriminate
whether a phoneme posteriorgram sequence is a real one gen-
erated from a signal in a domain, or a fake one transformed
from another domain.

3.4.1. Training Goal of Generators (or UPPTs)

The generators GX→Y , GY→X take the phoneme posterior-
gram sequences from a speaker domain as the input and pro-
duce another phoneme posteriorgram sequence close to those
for another speaker domain. Both are built with attention-
based sequence-to-sequence model to learn the mapping be-
tween p̂x ∈ X and p̂y ∈ Y such that the distribution of

GX→Y

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

GY→X

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

GY→X

GX→Y

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

DY

DX

scalar:
belongs to X or not

as
close

as
possible

as
close

as
possible

scalar:
belongs to Y or not

Fig. 2. Cycle-GAN. GX→Y and GY→X refer to generators.
DX and DY refer to discriminators. Blocks with the same
color share the same set of neural network parameters. Each
generator is built with a pair of UPPT encoder and UPPT
decoder.

GX→Y (p̂x) is as indistinguishable from that of p̂y as possible,
and GY→X(p̂y) is as indistinguishable from p̂x as possible.
The training of the generators are guided by the discrimina-
tors described below to achieve the above scenario.

3.4.2. Training Goal of Discriminators

The discriminators DX and DY take a phoneme posterior-
gram sequence as the input, and produce a scalar indicating
how ”real” the input is from the sets X or Y for the domain
considered, or actually fake or transformed from another do-
main. Such discriminators are to guide the generators. So
the training objective of discriminators are to distinguish be-
tween the real sequences such as p̂x, p̂y and fake sequences
such asGY→X(p̂y),GX→Y (p̂x) generated by the generators,
and give higher scores to real ones and lower scores to fake
ones.

3.4.3. Objective functions

Several objective functions are defined here as given below.
1. Adversarial Loss: Adversarial losses [21] are applied to
both mapping functions, GX→Y and GY→X . For the map-
ping function GX→Y and its discriminator DY , we express
the objective as in (1).

LGAN (GX→Y , DY) = Ey∼Y [logDY (y)]

+ Ex∼X [log (1−DY (GX→Y (x)))].
(1)

LGAN (GY→X , DX) is defined in exactly the same way
as (1), except the roles of X and Y are reversed.

2. Cycle Consistency Loss: Cycle consistency losses [24]
are applied when training the two generators. The transform
cycle should be able to bring x back to the original phoneme
posteriorgram sequence, i.e. GY→X(GX→Y (x)) ≈ x and
GX→Y (GY→X(y)) ≈ y. We express this objective as in (2).

Domain X Speaker

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

PPR(⋅)

Domain Y Speaker

GX→Y

PPT (⋅)SY

Domain Y Speaker

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

PPR(⋅)

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

Domain X Speaker

GY→X

PPT (⋅)SX

a
i
u
e

a
i
u
e

a
i
u
e

a
i
u
e

Fig. 3. The complete voice conversion process for the pro-
posed approach. Blocks with the same color share the same
set of neural network parameters.

(Note that Lxent in (2) means cross-entropy)

Lcycle(GX→Y , GY→X) = Ex∼X [Lxent(x,GY→X(GX→Y (x)))]

+ Ey∼Y [Lxent(y,GX→Y (GY→X(y)))].
(2)

3. Identity Mapping Loss: Identity mapping loss as pro-
posed in the original work of Cycle-GAN [24] is also used
here. When real samples of the target domain are provided
as the input to the generator, the transformed result should be
as close to the input as possible. It was found that adding
this objective as an extra regularization term for the genera-
tors actually improved the transformed results. We express
this objective as in (3).

Lidentity(GX→Y , GY→X) = Ex∼X [Lxent(x,GY→X(x)))]

+ Ey∼Y [Lxent(y,GX→Y (y)))].
(3)

The full objective for Cycle-GAN training is the sum of
(1)(2)(3):

Lcycle gan(GX→Y , GY→X , DX , DY) =

LGAN (GX→Y , DY) + LGAN (GY→X , DX)

+λ1Lcycle(GX→Y , GY→X) + λ2Lidentity(GX→Y , GY→X),
(4)

where λ1, λ2 are balancing parameters. So overall we aim to
solve:

G∗X→Y , G
∗
Y→X = arg min

GX→Y ,GY →X

max
DX ,DY

(Lcycle gan). (5)

3.5. Overall Voice Conversion

As shown in Figure 3, the overall voice conversion is achieved
by first passing the source speaker’s speech signal through
PPR(·) in subsection 3.1 to obtain its phoneme posteri-
orgram sequence, then using UPPT in subsection 3.3 to

transform it to the target domain, and finally using PPTS(·)
in subsection 3.2 trained on the target domain to synthesize
the target speech signal from the given phoneme posterior-
gram sequence.

4. MODEL IMPLEMENTATION AND TRAINING

We adopted primarily the model architecture from the CBHG
module [31] for all three parts of the proposed approach
including the phoneme posteriorgram recognizer PPR(·),
phoneme-posteriorgram-to-speech synthesizer PPTS(·) and
the unsupervised phoneme posteriorgram transformerUPPT
(or the generators). The convolution-bank in CBHG module
was found to be able to better capture the local information
over time, reduce overfitting and generalize well to long and
complex inputs, such as acoustic feature sequences [32]. As
previously suggested [18], for the discriminators, we treated
the input phoneme posteriorgram sequences as pictures with
channel size one, and performed several 1D-convolution lay-
ers with strides larger then one for better capturing the local
properties such as how many frames a speaker usually needs
to produce a specific phoneme. The attention mechanism
in UPPT was shown to be able to effectively improve the
decoder’s prediction [33]. The overall model architecture
and training details are available1 but left out here for space
limitation. We considered PPR(·) as a pseudo-labeler. We
first trained PPR(·) with the objective mentioned in sub-
section 3.1, and then trained PPTS(·) with the objective
mentioned in subsection 3.2. With the above done, we then
collected the estimated results of PPR(·) to train UPPT .

For PPR(·), we used mel-scale spectrogram as the input
acoustic features, and the phoneme set defined in Carnegie
Mellon pronouncing dictionary [34] as the labels for the pos-
teriorgram sequences. Thus the input to UPPT were se-
quences of vectors with dimension 70 (39 phoneme types
with stress combinations, each treated as mono-phoneme).
For PPTS, we used log-magnitude spectrogram as the out-
put acoustic features, over which Griffin-Lim algorithm [30]
was applied to synthesize the waveform. All other detailed
setting followed the previous work [32].

5. EXPERIMENTS AND RESULTS

5.1. Experimental setup

We used two datasets under a fully non-parallel setting. One
is Librispeech [36], an audio book read by multi-speakers.
The other one is VCTK [37], which is a multi-speaker dataset
primarily reading newspapers and elicitation paragraphs in-
tended to identify the speaker’s accent. Both datasets were
randomly split into training, validation and testing sets with
percentages of 80%, 10% and 10%. The phone boundaries
were not available in both datasets, so we used a force-aligner

1 https://github.com/acetylSv/rhythmic-flexible-vc-arch

(i) (ii) (i) (ii)
A C A→ C C→ A

(i) (ii) (i) (ii)
B D B→ D D → B

fast slow conventional proposed

Fig. 4. Average speaking rates (number of syllables / sec) for
utterances in testing set before and after conversion. The dots
and bars indicate the averages and the standard deviations.
Speakers A, B belonged to the fastest speaking group and C,
D to the slowest speaking group, (i) achieved by the conven-
tional method [35] while (ii) by the proposed approach. The
numbers shown are the averages.

pretrained on Librispeech dataset [38] to get the phone bound-
aries and corresponding phone classes for training PPR(·).

5.1.1. Librispeech Dataset

Using Praat Script Syllable Nuclei [39] to measure the speak-
ing rate, we picked the fastest 20 speakers and the slowest
20 speakers to form a subset with a total length of 15.8
hours or 4609 utterances for evaluation of conversion across
different speaking rates. When training the three compo-
nents in Figure 1, we used all the 40 speakers to train the
speaker-independent PPR(·), the grouped fastest and slow-
est 20 speakers as two domains to initialize the Cycle-GAN
training for UPPT (followed by individual training for each
conversion pair), and individually trained speaker-dependent
PPTS(·) for each speaker.

5.1.2. VCTK Dataset

We chose 18 speakers, some native and some non-native, with
a total of 7.3 hours or 7132 utterances, as a different scenario
for rhythmic patterns. We used all the 18 speakers to train
the speaker-independent PPR(·), but trained the UPPT and
PPTS(·) for each conversion pair individually.

5.2. Objective Evaluation

To show the proposed approach is able to learn the speak-
ing rates of the target speakers, we chose two speakers A, B
(with IDs 6925 and 460) from the fastest speaking group of
Librispeech and two speakers C, D (with IDs 163 and 1363)
from the slowest speaking group and performed the conver-
sions A↔ C and B↔ D on the utterances in their testing sets
using a conventional method [35] and the proposed approach.
This is actually an ablation study, since the only difference be-
tween the two is whether the UPPT proposed here was used
or not. The results are plotted in Figure 4, where the averages

Fig. 5. Example rhythmic patterns (duration distributions) for phonemes ”L”, ”N”, ”EH1”, ”EY1”. The histograms were
normalized by Gaussian kernel density estimation (bandwidth=0.125). Different colors represent the rhythmic patterns for
different speakers (green and red) and converted voice (blue and brown).

and standard deviations of the speaking rates are shown for
the two approaches. We can see from Figure 4 the proposed
approach could mimic the speaking rates of the target speaker
much better.

To show the proposed approach is capable of learning
the rhythmic patterns (phoneme duration distributions) for the
target speaker, we chose a pair of speakers E, F (with IDs
p231 and p265) from VCTK and performed the conversion E
→ F on their testing utterances. We used the pretrained force-
aligner to obtain the phoneme duration and normalized the
histograms by Gaussian kernel density estimation. The ex-
ample rhythmic patterns for two vowels and two consonants
are plotted in Figure 5, in which the different colors are re-
spectively for source and target speakers (green and red) and
the converted voice by a conventional [35] (blue) and the pro-
posed (brown) approaches. We can see from Figure 5 differ-
ent speakers did show very different rhythmic patterns, and
the proposed approach was able to mimic these patterns of
the target speaker much better.

5.3. Subjective Evaluation

Subjective evaluation was performed on converted voice (in-
cluding both intra-gender and inter-gender conversions) from
VCTK datasets. In the binary preference test for speaker
similarity, 20 subjects were given pairs of converted voice in
random order and asked to choose one sounding more similar
to a reference target utterance produced by the target speaker,
comparing the proposed approach to a recently proposed
non-parallel VC by Chou et al. [17] and the conventional
method [35]. The results are in Figure 6 (a)(b). We can
see the proposed approach obviously outperformed the two
previous approaches in terms of speaker similarity.

The MOS for naturalness in Figure 6 (c) shows the pro-
posed approach is better than the conventional method [35],
although not as good as the recently proposed non-parallel
VC [17], very probably because of the mean square error
(MSE) objective function used in training PPTS(·) in sub-
section 3.2. It was found that models trained with MSE
objective tend to output average predictions [40], which

Fig. 6. Subjective evaluation results: binary preference test
for speaker similarity compared to (a) the recently proposed
non-parallel VC with length constraint (Chou et al. [17]), (b)
the conventional method [35] (ablation study); and (c) 5-scale
naturalness MOS scores similarly compared.

may lead to over-smoothed log-magnitude spectrograms and
blurred sounds after the Griffin-Lim algorithm. Investigations
for replacing Griffin-Lim vocoder with a neural vocoder [41]
or applying post-filters to enhance the output log-magnitude
spectrograms are under progress. Another possible direction
may be applying sequence-to-sequence Cycle-GAN directly
on log-magnitude spectrograms rather than on the phoneme
posteriorgram sequences, but at the difficulties of the high
feature dimension and complex model structures.

6. CONCLUSION

Objective and subjective evaluation on two different datasets
showed that the proposed approach is able to mimic the voice
characteristics of a target speaker, including the speaking
rate and rhythmic patterns, without parallel data by utilizing
sequence-to-sequence learning trained with Cycle-GAN to
remove the length constraint. Although phoneme boundaries
are needed for the training data, an easily obtained pretrained
force-aligner can offer these boundaries.

7. REFERENCES

[1] Dimitrios Rentzos, S Vaseghi, E Turajlic, Qin Yan, and
Ching-Hsiang Ho, “Transformation of speaker char-
acteristics for voice conversion,” in Automatic Speech
Recognition and Understanding, 2003. ASRU’03. 2003
IEEE Workshop on. IEEE, 2003, pp. 706–711.

[2] Ryo Aihara, Ryoichi Takashima, Tetsuya Takiguchi,
and Yasuo Ariki, “Gmm-based emotional voice conver-
sion using spectrum and prosody features,” American
Journal of Signal Processing, vol. 2, no. 5, pp. 134–138,
2012.

[3] Hiromichi Kawanami, Yohei Iwami, Tomoki Toda, Hi-
roshi Saruwatari, and Kiyohiro Shikano, “Gmm-based
voice conversion applied to emotional speech synthe-
sis,” in Eighth European Conference on Speech Com-
munication and Technology, 2003.

[4] Keisuke Oyamada, Hirokazu Kameoka, Takuhiro
KANEKO, Hiroyasu ANDO, Kaoru HIRAMATSU, and
Kunio KASHINO, “Non-native speech conversion with
consistency-aware recursive network and generative ad-
versarial network,” in Proceedings of APSIPA Annual
Summit and Conference, 2017, vol. 2017, pp. 12–15.

[5] Alexander B Kain, John-Paul Hosom, Xiaochuan Niu,
Jan PH van Santen, Melanie Fried-Oken, and Janice
Staehely, “Improving the intelligibility of dysarthric
speech,” Speech communication, vol. 49, no. 9, pp. 743–
759, 2007.

[6] Frank Rudzicz, “Acoustic transformations to improve
the intelligibility of dysarthric speech,” in Proceed-
ings of the Second Workshop on Speech and Language
Processing for Assistive Technologies. Association for
Computational Linguistics, 2011, pp. 11–21.

[7] Keigo Nakamura, Tomoki Toda, Hiroshi Saruwatari,
and Kiyohiro Shikano, “Speaking-aid systems us-
ing gmm-based voice conversion for electrolaryngeal
speech,” Speech Communication, vol. 54, no. 1, pp.
134–146, 2012.

[8] Yannis Stylianou, Olivier Cappé, and Eric Moulines,
“Continuous probabilistic transform for voice conver-
sion,” IEEE Transactions on speech and audio process-
ing, vol. 6, no. 2, pp. 131–142, 1998.

[9] Alexander Kain and Michael W Macon, “Spectral voice
conversion for text-to-speech synthesis,” in Acoustics,
Speech and Signal Processing, 1998. Proceedings of the
1998 IEEE International Conference on. IEEE, 1998,
vol. 1, pp. 285–288.

[10] Daisuke Saito, Keisuke Yamamoto, Nobuaki Mine-
matsu, and Keikichi Hirose, “One-to-many voice
conversion based on tensor representation of speaker
space,” in Twelfth Annual Conference of the Interna-
tional Speech Communication Association, 2011.

[11] Tomi Kinnunen, Lauri Juvela, Paavo Alku, and Junichi
Yamagishi, “Non-parallel voice conversion using i-
vector plda: Towards unifying speaker verification and
transformation,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2017 IEEE International Conference
on. IEEE, 2017, pp. 5535–5539.

[12] Tomoki Toda, Alan W Black, and Keiichi Tokuda,
“Voice conversion based on maximum-likelihood esti-
mation of spectral parameter trajectory,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol.
15, no. 8, pp. 2222–2235, 2007.

[13] Srinivas Desai, E Veera Raghavendra, B Yegna-
narayana, Alan W Black, and Kishore Prahallad, “Voice
conversion using artificial neural networks,” in Acous-
tics, Speech and Signal Processing, 2009. ICASSP 2009.
IEEE International Conference on. IEEE, 2009, pp.
3893–3896.

[14] Lifa Sun, Hao Wang, Shiyin Kang, Kun Li, and Helen M
Meng, “Personalized, cross-lingual tts using phonetic
posteriorgrams.,” in INTERSPEECH, 2016, pp. 322–
326.

[15] Feng-Long Xie, Frank K Soong, and Haifeng Li, “A
kl divergence and dnn-based approach to voice conver-
sion without parallel training sentences.,” in INTER-
SPEECH, 2016, pp. 287–291.

[16] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu,
Yu Tsao, and Hsin-Min Wang, “Voice conversion
from unaligned corpora using variational autoencod-
ing wasserstein generative adversarial networks,” arXiv
preprint arXiv:1704.00849, 2017.

[17] Ju-chieh Chou, Cheng-chieh Yeh, Hung-yi Lee, and
Lin-shan Lee, “Multi-target voice conversion without
parallel data by adversarially learning disentangled au-
dio representations,” arXiv preprint arXiv:1804.02812,
2018.

[18] Takuhiro Kaneko and Hirokazu Kameoka, “Parallel-
data-free voice conversion using cycle-consistent ad-
versarial networks,” arXiv preprint arXiv:1711.11293,
2017.

[19] Hiroyuki Miyoshi, Yuki Saito, Shinnosuke Takamichi,
and Hiroshi Saruwatari, “Voice conversion us-
ing sequence-to-sequence learning of context posterior
probabilities,” arXiv preprint arXiv:1704.02360, 2017.

[20] Diederik P Kingma and Max Welling, “Auto-encoding
variational bayes,” arXiv preprint arXiv:1312.6114,
2013.

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio, “Generative adversar-
ial nets,” in Advances in neural information processing
systems, 2014, pp. 2672–2680.

[22] Mehdi Mirza and Simon Osindero, “Conditional gener-
ative adversarial nets,” arXiv preprint arXiv:1411.1784,
2014.

[23] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu,
Yu Tsao, and Hsin-Min Wang, “Voice conversion from
non-parallel corpora using variational auto-encoder,” in
Signal and Information Processing Association Annual
Summit and Conference (APSIPA), 2016 Asia-Pacific.
IEEE, 2016, pp. 1–6.

[24] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros, “Unpaired image-to-image translation using
cycle-consistent adversarial networks,” arXiv preprint
arXiv:1703.10593, 2017.

[25] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-
Woo Ha, Sunghun Kim, and Jaegul Choo, “Star-
gan: Unified generative adversarial networks for multi-
domain image-to-image translation,” arXiv preprint
arXiv:1711.09020, 2017.

[26] Yang Gao, Rita Singh, and Bhiksha Raj, “Voice imper-
sonation using generative adversarial networks,” arXiv
preprint arXiv:1802.06840, 2018.

[27] Fuming Fang, Junichi Yamagishi, Isao Echizen, and
Jaime Lorenzo-Trueba, “High-quality nonparallel voice
conversion based on cycle-consistent adversarial net-
work,” arXiv preprint arXiv:1804.00425, 2018.

[28] Hirokazu Kameoka, Takuhiro Kaneko, Kou Tanaka, and
Nobukatsu Hojo, “Stargan-vc: Non-parallel many-to-
many voice conversion with star generative adversarial
networks,” arXiv preprint arXiv:1806.02169, 2018.

[29] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Se-
quence to sequence learning with neural networks,”
in Advances in neural information processing systems,
2014, pp. 3104–3112.

[30] Daniel Griffin and Jae Lim, “Signal estimation from
modified short-time fourier transform,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol.
32, no. 2, pp. 236–243, 1984.

[31] Jason Lee, Kyunghyun Cho, and Thomas Hof-
mann, “Fully character-level neural machine trans-
lation without explicit segmentation,” arXiv preprint
arXiv:1610.03017, 2016.

[32] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui
Wu, Ron J Weiss, Navdeep Jaitly, Zongheng Yang, Ying
Xiao, Zhifeng Chen, Samy Bengio, et al., “Tacotron:
Towards end-to-end speech synthesis,” arXiv preprint
arXiv:1703.10135, 2017.

[33] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio, “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[34] Robert Weide, “The carnegie mellon pronouncing dic-
tionary [cmudict. 0.6],” 2005.

[35] Lifa Sun, Kun Li, Hao Wang, Shiyin Kang, and Helen
Meng, “Phonetic posteriorgrams for many-to-one voice
conversion without parallel data training,” in Multime-
dia and Expo (ICME), 2016 IEEE International Confer-
ence on. IEEE, 2016, pp. 1–6.

[36] Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “Librispeech: an asr corpus based on
public domain audio books,” in Acoustics, Speech and
Signal Processing (ICASSP), 2015 IEEE International
Conference on. IEEE, 2015, pp. 5206–5210.

[37] Christophe Veaux, Junichi Yamagishi, Kirsten MacDon-
ald, et al., “Cstr vctk corpus: English multi-speaker cor-
pus for cstr voice cloning toolkit,” 2017.

[38] Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger, “Montreal
forced aligner: trainable text-speech alignment using
kaldi,” in Proceedings of interspeech, 2017.

[39] Nivja H De Jong and Ton Wempe, “Praat script to detect
syllable nuclei and measure speech rate automatically,”
Behavior research methods, vol. 41, no. 2, pp. 385–390,
2009.

[40] Takuhiro Kaneko, Hirokazu Kameoka, Nobukatsu Hojo,
Yusuke Ijima, Kaoru Hiramatsu, and Kunio Kashino,
“Generative adversarial network-based postfilter for sta-
tistical parametric speech synthesis,” in Acoustics,
Speech and Signal Processing (ICASSP), 2017 IEEE In-
ternational Conference on. IEEE, 2017, pp. 4910–4914.

[41] Aäron Van Den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu,
“Wavenet: A generative model for raw audio,” CoRR
abs/1609.03499, 2016.

	 Introduction
	 Related Work
	 Non-parallel VC using Deep Learning
	 Sequence-to-sequence Conversion over Posteriorgram Sequences Trained with Parallel Data

	 Proposed Approach
	 Phoneme Posteriorgram Recognizer
	 Phoneme-Posteriorgram-to-Speech Synthesizer
	 Unsupervised Phoneme Posteriorgram Transformer
	 Cycle-GAN
	 Training Goal of Generators (or UPPTs)
	 Training Goal of Discriminators
	 Objective functions

	 Overall Voice Conversion

	 Model Implementation and Training
	 Experiments and Results
	 Experimental setup
	 Librispeech Dataset
	 VCTK Dataset

	 Objective Evaluation
	 Subjective Evaluation

	 Conclusion
	 References

