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ABSTRACT

It is crucial for language models to model long-term dependency
in word sequences, which can be achieved to some good extent by
recurrent neural network (RNN) based language models with long
short-term memory (LSTM) units. To accurately model the sophis-
ticated long-term information in human languages, large memory
in language models is necessary. However, the size of RNN-based
language models cannot be arbitrarily increased because the com-
putational resources required and the model complexity will also
be increase accordingly, due to the limitation of the structure. To
overcome this problem, inspired from Neural Turing Machine and
Memory Network, we equip RNN-based language models with con-
trollable external memory. With a learnable memory controller, the
size of the external memory is independent to the number of model
parameters, so the proposed language model can have larger memory
without increasing the parameters. In the experiments, the proposed
model yielded lower perplexities than RNN-based language models
with LSTM units on both English and Chinese corpora.

Index Terms— RNNLM, Neural turing machine

1. INTRODUCTION

Language models play a critical role in automatic speech recogni-
tion because they model prior knowledge of natural language and
help resolve the ambiguity from the acoustic information. Neural
networks were first used for language modeling by Bengio et al. [1].
They used a feedforward neural network with the 1-of-n represen-
tation of the previous words in the sentence, and compressed them
into a smaller continuous-valued feature vector. Emani and Jelink
improved feedforward neural network language models by consider-
ing the syntactic information of the words [2].

Mikolov et al. proposed recurrent neural network based lan-
guage modeling (RNNLM) [3][4][5]. Unlike feedforward networks
that can only take account of a limited number of words, RNN can
use the information of the full sentence. RNNLM can be further
improved by augmenting the input features with contextual infor-
mation [6] using latent Dirichlet allocation (LDA) [7], the training
can be accelerated by clustering words into classes, and class based
factorisation can be employed to avoid large output layers [8]. Many
related works propose improvements or to the RNN language model,
either in performance or training speed [9][10][11].

Although RNN language models can be trained efficiently on
GPUs by using data parrallelism [12], there is some difficulty train-
ing the parameters using backpropagation through time because
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of the vanishing/exploding gradient problem. One way to avoid
this problem is to use structurally constrained recurrent network
(SCRN) [13]. Another way is to use LSTM units whose memory
cells can store values for arbitrary amount of time [14]. It has been
shown that LSTM units produce better results than RNN on lan-
guage modeling [15][16][17]. LSTMN, which has a memory tape
to adaptively store past information, were further proposed as an
improvement of LSTM units [18].

To accurately model the sophisticated long-term information in
human languages, more sophisticated memory in language models
may help. However, the memory size of RNN-based language mod-
els cannot be arbitrarily increased because the model complexity
and the computational resources required increase simultaneously.
In this paper, we equip RNN-based language models with external
memory, and the memory is accessed by a learnable controller. The
size of the external memory is independent to the number of model
parameters, so the proposed language model can have larger memory
without increasing the parameters. The model proposed here is in-
spired by Neural Turing Machine (NTM) [19] which was claimed
to be analogous to a Turing Machine or Von Neumann architec-
ture. It was shown that NTM can successfully learn simple algo-
rithms such as copying, sorting, and associative recall [19]. Peng et
al. [20] applied similar external memory on language understanding
and obtained successful results. For language modeling with exter-
nal memory, recurrent memory network [21] inspired from memory
network [22], stack RNN [23] and LSTMN[18] have been applied
on language modeling, but the performance of NTM on language
modeling has not been widely explored yet. Compared with other
models, NTM has some specific operations in its controller. The
experimental results show that those operations are helpful for lan-
guage modeling. Different architecture and training strategies for
the memory controller are explored in this paper. By using a gated
feedforward controller, our system outperformed the state-of-the-art
methods on both English and Chinese corpora.

2. LANGUAGE MODEL WITH EXTERNAL MEMORY

The structure of the proposed language model is shown in Fig. 1,
which consists of a controller at the left hand side and an external
memory block at the right hand side. The input xt and output yt
of the model at each time step t will be described in Section 2.1.
In Section 2.2, a vector rt is extracted from the memory block by
the weight distribution vector ωt−1 computed in the last time step
t − 1. The controller presented in Section 2.3 reads rt and input
xt, and then generates the output yt and several vectors and scalars
controlling the memory. In Section 2.4, we will describe how to
compute the weight distribution ωt for information extraction, and
finally in Section 2.5, the information stored in the memory block is
updated.



Fig. 1: The structure of the language model with external memory.

2.1. Model input and output

For each time step t, the input xt is the 1-of-n coding of the t-th
word in a sentence. The 1-of-n coding is a n-dimensional vector,
where n is the vocabulary size. In 1-of-n coding vector, all elements
are 0 except the dimension corresponding to the word represented,
which has the value 1. The output yt is the prediction of the next
word in the sentence, and the training target ŷt is the (t+1)-th word
truly appearing in the sentence.

2.2. Information read from External Memory

The external memory block M is a matrix of size p × q. It can
be considered as q memory vectors, and each memory vector is of
dimension p. The number of parameters in the language model is
independent to the number of memory vectors q, so increasing the
number of memory vectors in the external memory block would not
increase the number of parameters. A vector rt ∈ Rp×1, where p
is the dimension of the memory vectors, is read from the memory at
each time step to determine the output yt, which is calculated as in
(1).

rt = Mt−1ωt−1, (1)

where Mt−1 is the values in the memory block at the last time step
t − 1, and ωt−1 is the weight distribution vector calculated at the
last time step. rt in (1) is the linear combination of the values of
the q memory vectors with the entries in ωt−1 as the coefficients.
Therefore, the values of the entries in ωt−1 determine whether the
information stored in the corresponding memory vector should be
extracted for predicting the next word distribution yt.

2.3. Controller

The architecture of the controller is shown in the left hand side of
Fig. 1. The hidden layer ht ∈ Rh×1, where h is the hidden layer
size, is calculated from the input 1-of-n coding vector xt and the
vector rt read from the memory. Then the controller generates ht
from xt and rt. rt can be generated by different kinds of network
structure. This will be investigated in the experiments. The output
yt is then calculated from ht as below.

yt = softmax(wyht + by), (2)

where wy and by are weight and bias parameters.
The controller generates a set of vectors and scalars from ht to

modify the current values of the memory. The set of vectors and
scalars including the key vector kt ∈ Rp×1 (p is the dimension of
memory vector), the key strength scalar βt, the interpolation scalar
gt, the shift vector st ∈ R3×1, the sharpening scalar γt, the erase
vector et ∈ Rp×1 and the add vector at ∈ Rp×1 are calculated as:

kt = wkht + bk, (3)

βt = log(1 + exp(wβht + bβ)), (4)

gt = σ(wght + bg), (5)

st = softmax(wsht + bs), (6)

γt = 1 + log(1 + exp(wγht + bγ)), (7)

et = σ(weht + be), (8)

at = waht + ba. (9)

All the w∗ and b∗ from (3) to (9) are weight and bias parameters
to be learned. The above kt, βt, gt, st, γt are used to generate the
weight distribution ωt in Section 2.4. With ωt, et in (8) and at in (9),
the information stored in the memory block is updated in Section 2.5.

2.4. Weight Distribution

The current weight distribution ωt is generated by ωt−1 and kt, βt,
gt, st and γt. The basic idea is the entries in ωt corresponding to
the memory vectors similar to kt have larger values, while βt and
γt better shape the distribution. gt takes the distribution at the last
time step ωt−1 into consideration when generating the current distri-
bution ωt. st shifts the distribution. Here the weight distribution is
generated in the same way as NTM [19], but in the experiments, we
found that not all the operations are useful for language modeling.

To generate ωt, first we compute the similarity between the key
vector kt and each memory vector in the memory block Mt−1. The
cosine similarity between kt and the c-th memory vector in memory
Mt−1, which is denoted as Kc, is in (10).

Kc =
kt •Mt−1(:, c)

||kt||||Mt−1(:, c)||
, (10)

where Mt−1(:, c) is the c-th memory vector, and • denotes the in-
ner product. Then we have a weight distribution over the memory
vectors, ω̂t, in which the memory vectors that are similar to the key
vector kt are given higher weights. The c-th component of ω̂t, ω̂t[c],
is computed as in (11).

ω̂t[c] =
exp(βtKc)∑q
j=1 exp(βtKj)

, (11)

where the scalar βt is used to adjust the weight distribution ω̂t. In
(11), the similarity values Kc are normalized over the q memory
vectors, so the summation of the entries in ω̂t would be 1. Subse-
quently, the weight ω̂t is interpolated with the weight ωt−1 at the
last time step using scalar gt to have another weight distribution ωgt ,

ωgt = (1− gt)ωt−1 + gtω̂t. (12)

With (12), the current distribution would be influenced by the distri-
bution at the last time step. The degree of influence is determined by
scalar gt learned from data. Then a convolution of the weight ωgt and



the shift vector st is calculated to produce ωst . The i-th component
of ωst , ωst [i], is calculated as in (13).

ωst [i] =

i+1∑
j=i−1

ωgt [j]st[i− j + 2] (13)

Finally, the weight ωst is sharpened using the sharpening scalar γt to
obtain the final ωt. The i-th component of ωt[i] obtained by sharp-
ening is shown in (14).

ωt[i] =
(ωst [i])

γt∑q
j=1(ω

s
t [j])

γt
(14)

2.5. Updating External Memory Block

With the weight distribution ωt, the values in the memory block at
the current time step t, Mt, is updated from Mt−1 with the erase
vector et and addition vector at. The formulation of the update is in
(15),

Mt = Mt−1 � (1− etω
T
t ) + atω

T
t , (15)

where 1 is an all-ones matrix with the same size as the memory block
M.

3. EXPERIMENTS

3.1. Experimental Setup

We conducted the experiments on two corpora, PTT dataset and
Penn Treebank (PTB) dataset. In the experiments, we first explored
the architectures and training strategies of the proposed model on
PTT dataset in Section 3.2, and then compared the proposed model
with the baselines on both corpora in Section 3.3. The PTT dataset
contains data crawled from the PTT Bulletin Board System, the
largest forum in Taiwan. We randomly chose 50,000 sentences for
training and 5,000 sentences for validation and testing, respectively.
We trained character-based language model on this corpus. The
vocabulary size is 4,011. The Penn Treebank (PTB) corpus contains
segments of news reports from the Wall Street Journal. We per-
formed the experiments with exactly the same experiment setup as
previous works [6][24]. Sections 0-20, 21-22, 23-24 were employed
as training, validation and test data respectively. Only the 10,000
most frequent words in the vocabulary were considered, and all
other words were regarded as unknown words. Punctuation marks
were also treated as words.

For training the parameters in the neural networks, rmsprop [25]
method for gradient descent was used to update the weights. The
learning rate was set at 0.0002, and momentum was 0.95. The ex-
ternal memory M is a matrix of size 128 × 20, or p = 128 and
q = 20 in Section 2, initialized with a uniformly distributed ran-
dom number. Dropout was only applied when training on the PTB
dataset, and the dropout rate was 0.5. The sequence level dropout
[26] was used here, which means the dropout mask is remained the
same for the whole sequence. We used perplexity (PPL) to evaluate
the performance of the language models.

3.2. Model Architectures and Training Methods

3.2.1. Experiments on generating attention weights

The process of generating the weight distribution ωt inspired from
NTM is very sophisticated. To obtain ωt in (14), there are four steps,
normalization in (11), interpolation in (12), shift in (13) and sharp-
ening in (14). To show the importance of each step for calculating

the attention weight ωt, we experimented on leaving one of the steps
out on the PTT corpus. The number of parameters for the proposed
model was approximately 2M in the experiment. The results are
shown in Table 1. We found that removing one of the steps in (11)
to (14) increased PPL, except shift in (13), and removing the inter-
polation step in (12) increased PPL most. The results suggest that
interpolation is a crucial step, while the shift step is probably not
necessary. The results are reasonable. Assuming that each memory
vector contains the information of a word have read in the sentence
before predicting the next word, then the shift operation does not
make sense.

Table 1: Perplexity (PPL) for leaving out one of the steps for form-
ing attention weight ωt in (14) on the PTT corpus.

Initialization PPL
Complete Model 94.43
Removing normalization in (11) 94.46
Removing interpolation in (12) 95.34
Removing shift in (13) 94.09
Removing sharpening in (14) 94.77

3.2.2. Experiments on controller structures

We experimented different structures for controllers on PTT dataset.
Table 2 shows the experimental results. For fair comparison, all the
models with different controllers in Table 2 have approximately 3M
parameters. Taking a feedforward network, vanilla RNN, GRU or
LSTM network (all the networks have only one hidden layer) as con-
trollers obtained PPL in rows (a), (b), (c) and (d), respectively. It is
found that when using recurrent networks like RNN, GRU or LSTM
as controllers, the parameters in the controllers connected to rt in (1)
(also at the bottom of Fig. 1) tended to be zero after training, which
made the external memory have little influence to the results. To
overcome this problem, we added a regularized term for the param-
eters connected to rt to force the parameters to have larger values
to make the external memory have larger influence1. The results of
LSTM with special regularization is in row (e), which did not im-
prove over the original LSTM (rows (e) v.s. (d)).

Here we proposed gated recurrent network to generate ht from
xt and rt as below.

ht = σ(wixxt +wirrt + bi)�
tanh(tanh(wgxxt +wgrrt + bg)),

(16)

where σ is the sigmoid function, tanh is for hyperbolic tangent func-
tion2, and � represents element-wise multiplication. wix ∈ Rh×n,
wir ∈ Rh×p, wgx ∈ Rh×n ,wgr ∈ Rh×p, bi ∈ Rh×1, bg ∈
Rh×1 are the weight and bias parameters to be learned. The struc-
ture of controller can be interpreted as a simple feedforward neural
network with an input gate, similar to the input gate in LSTM. The
gated feedforward network yielded the lowest PPL in Table 2 (rows
(f) v.s. (a) to (e)).

3.2.3. Experiments on initialization
We also experimented on initializing wix or wgx with word embed-
ding matrix mentioned in the last subsection on PTT corpus. Feed
forward pre-training for recurrent neural network language models
has been proven to improve the model performance [27]. Inspired

1Traditional regularization makes the parameter values smaller, but here
the regularization term is to force the parameter values to be larger.

2Applying the tanh activation function in (16) twice yielded better results
in the experiments. The reason is still under investigation.



Table 2: PPL for controllers with different structures on PTT cor-
pus. For fair comparison, all the models below have approximately
the same number of parameters, which is 3M.

Controller Structure PPL
(a) Feedforward Net 115.54
(b) RNN 102.01
(c) GRU 115.97
(d) LSTM 94.46
(e) Regularized LSTM 94.73
(f) Proposed Gated Feedforward Net 92.17

by this, we initialize the parameters wgx or wix in (16) using a set
of word vectors. A set of word vectors whose dimension equal to
the hidden layer size h is learned from the training data of language
model by the CBOW model using Word2vec toolkit, which imple-
ments the algorithm described in [28] and [29]. The word embed-
ding matrix for the set of word vectors which projects 1-of-n coding
of a word into its word vector serves as the initialization of wgx or
wix. The model in row (f) of Table 2 is used here, except with dif-
ferent initialization. The results are shown in Table 3. All the model
parameters are randomly initialized in row (a), which is also the re-
sults in row (f) in Table 2. In rows (b) and (c), either wix or wgx

in (16) were initialized by the word embedding matrix; while in row
(d), both wix and wgx were initialized by the word embedding ma-
trix. Our conclusion is that initializing one of wix and wgx yielded
better results than random initialization, and their performances are
similar (rows (b), (c) v.s. (a)). However, initializing both of them
degraded the performance (rows (d) v.s. (b), (c)), probably because
this forces wix and wgx to be similar and limits the function of the
gate. The results reveal that either wix or wgx plays the role as word
embedding in the proposed model.

Table 3: PPL for different initialization methods. All the model
parameters are randomly initialized in row (a). In rows (b) and (c),
either wix or wgx in (16) were initialized by the word embedding
matrix; while in row (d), both wix and wgx were initialized by the
matrix.

Initialization PPL
(a) Random initialization (row (f) in Table 2) 92.17
(b) wix in (16) initialized by embedding 91.88
(c) wgx in (16) initialized by embedding 91.87
(d) Both wgx and wix initialized by embedding 95.12

3.3. Comparison with Baselines

We compare the proposed method with LSTM language model on
the PTT dataset, taking model complexity into account. In this ex-
periment, we controlled the number of neurons in the hidden layers
so that the total number of parameters in both LSTM and proposed
model were the same. The results are shown in Fig. 2. The horizon-
tal axis is for different number of parameters, while the vertical axis
is for PPL. The blue curve is the PPL of LSTM with different num-
bers of model parameters, while the red curve is for the proposed
approach. It is clear that the proposed model has constantly lower
PPL than LSTM over different model complexity.

Then the experiments were conducted on the PTB dataset in
order to compare the performance of the proposed approach with
the previous methods. The results are shown in Table 4. We com-
pared the proposed model to the baselines including KN5 [30], the

Fig. 2: Comparison of proposed model and LSTM language model
on PTT corpus under the same number of parameters.

log-bilinear model [31], feedforward neural networks [1] , syn-
tactical neural networks [2], recurrent neural networks (RNN) [3],
and LDA-augmented RNN [6], LSTM, Long Short-Term Memory-
Networks(LSTMN) [18],and Recurrent Memory Networks(RMN) [32].

For fair comparison, LSTM, RMN, LSTMN, and the proposed
model, the size of the hidden layer are all 300. For other methods,
the results are from the literature, where the model complexity is
determined by the development set. It can be seen that our method
achieved the state-of-the-art performance of 98.6, much better than
other compared methods. Interpolation of different language mod-
els can improve the model performance [33]. We experimented on
integrating the output probability distribution of our model with the
probability distribution of LSTM with the interpolation weight de-
termined by the development set (row (k)). By interpolation, we
further imroved the perplexity to 89.9. This shows that the proposed
model and LSTM are complementary to each other.

Table 4: PPL scores of different language models on the Penn Tree-
bank (PTB) dataset.

Model PPL
(a) KN5[30] 141.2
(b) Log-bilinear model[31] 144.5
(c) Feedforward neural network[1] 140.2
(d) Syntatical neural network[2] 131.3
(e) RNN [3] 124.7
(g) LSTM 115
(f) LDA-augmented RNN [6] 113.7
(h) RMN [32] 112.5
(i) LSTMN [18] 108
(j) Proposed 98.6
(k) Proposed + LSTM 89.9

4. CONCLUSIONS

In this paper, we equip RNN-based language model with control-
lable external memory. We found that using gated feedforward net-
work as controller obtains better performance than other network
architectures, and initializing the controller parameters by word em-
bedding matrix is helpful. The experimental results show that the
proposed model yielded lower perplexities than LSTM-based lan-
guage models on both English and Chinese corpora. For the future
work, we will evaluate the proposed model on other applications
such as speech recognition, caption generation and translation.
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