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Abstract—Spoken content retrieval refers to directly indexing
and retrieving spoken content based on the audio rather than
text descriptions. This potentially eliminates the requirement of
producing text descriptions for multimedia content for indexing
and retrieval purposes, and is able to precisely locate the exact
time the desired information appears in the multimedia. Spoken
content retrieval has been very successfully achieved with the
basic approach of cascading automatic speech recognition (ASR)
with text information retrieval: after the spoken content is
transcribed into text or lattice format, a text retrieval engine
searches over the ASR output to find desired information. This
framework works well when the ASR accuracy is relatively high,
but becomes less adequate when more challenging real-world
scenarios are considered, since retrieval performance depends
heavily on ASR accuracy.

This challenge leads to the emergence of another approach
to spoken content retrieval: to go beyond the basic framework
of cascading ASR with text retrieval in order to have retrieval
performances that are less dependent on ASR accuracy. This
article is intended to provide a thorough overview of the concepts,
principles, approaches, and achievements of major technical
contributions along this line of investigation. This includes five
major directions: (1) Modified ASR for Retrieval Purposes:
cascading ASR with text retrieval, but the ASR is modified or
optimized for spoken content retrieval purposes; (2) Exploiting
the Information not present in ASR outputs: to try to utilize the
information in speech signals inevitably lost when transcribed
into phonemes and words; (3) Directly Matching at the Acoustic
Level without ASR: for spoken queries, the signals can be directly
matched at the acoustic level, rather than at the phoneme or word
levels, bypassing all ASR issues; (4) Semantic Retrieval of Spoken
Content: trying to retrieve spoken content that is semantically
related to the query, but not necessarily including the query terms
themselves; (5) Interactive Retrieval and Efficient Presentation of
the Retrieved Objects: with efficient presentation of the retrieved
objects, an interactive retrieval process incorporating user actions
may produce better retrieval results and user experiences.

I. INTRODUCTION

Today the Internet has become an everyday part of hu-
man life. Internet content is indexed, retrieved, searched, and
browsed primarily based on text, and the success of these
capabilities has not only changed our lives, but generated
a very successful global industry in Internet-based content
and services. Although multimedia Internet content is growing
rapidly, with shared videos, social media, broadcasts, etc., as
of today, it still tends to be processed primarily based on the
textual descriptions of the content offered by the multimedia
providers.

As automatic speech recognition (ASR) technologies con-
tinue to advance, it is reasonable to believe that speech and
text offerings will eventually be symmetric, since they are
alternative representations of human language, in the spoken
and written form, respectively, and the transformation between
the two should be direct and straightforward. With this per-
spective, spoken content retrieval, or indexing and retrieving

multimedia content from its spoken part, is an important key
to easier browsing and retrieving of multimedia content in
the future. In cases where the essence of the multimedia
content is captured by its audio, especially for broadcast
programs, lectures, meetings, etc., indexing and retrieving the
content based on the spoken part not only eliminates the extra
requirements of producing the text description for indexing
purposes, but can precisely locate the exact time when the
desired information appears in the multimedia. The basic
scenario for spoken content retrieval is therefore the following:
when the user enters a query, which can be either in textual
or spoken form, the system is expected to search over the
spoken content and return relevant hits, possibly including the
corresponding multimedia (e.g., video).

In recent years, spoken content retrieval has achieved sig-
nificant advances by primarily cascading ASR output with text
information retrieval techniques [1]–[8]. With this approach,
the spoken content is first converted into word sequences or
lattices via ASR. In order to cope with ASR errors, lattices
have been used to represent the spoken content instead of a
single word sequence [9]–[13], and subword-based techniques
have been used to some extent to address the out-of-vocabulary
(OOV) problem [11]–[14]. For a subsequent user query (rep-
resented by lattices if spoken [8]), the text retrieval engine
searches over the ASR output, and returns the relevant spoken
content.

The cascade approach was very successful for the task
of Spoken Document Retrieval (SDR, the term frequently
used for this task earlier) track of Text REtrieval Conference
(TREC), and achieved similar retrieval performance when
compared with retrieval performance from human transcrip-
tions. For this task, the word error rates (WERs) were 15-20%,
which were not too far from the accuracy of the approximate
manual transcriptions, and both the queries and target docu-
ments were relatively long which made good retrieval perfor-
mance easier. Therefore, initially, spoken document retrieval
was considered to be a “solved” problem [15]. Many success-
ful applications were developed based on this framework, such
as SpeechFind [16], PodCastle [17], GAudi (short for Google
Audio Indexing) [18], MIT Lecture Browser [19] and NTU
Virtual Instructor [20], [21]. However, the cascade approach
was subsequently found to work well mainly for relatively high
ASR accuracies, because the achievable retrieval performance
is inevitably highly dependent on ASR quality. It naturally
becomes less adequate when more challenging real-world
tasks were considered, such as the use of short queries to
retrieve short voice segments from telephone conversations,
meetings, academic lectures, or shared videos, for spontaneous
speech with OOV words, varying acoustic conditions and
higher WERs [9].
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One obvious solution to rectify these issues is to reduce
the WERs of ASR systems. Much research continues to be
devoted to reducing ASR WERs, and significant improvements
continue to be achieved [22]–[37], based on which very good
improvements on spoken content retrieval performance were
also reported [38]–[47]. However, we must assume that spoken
content on the Internet is produced by millions of different
speakers, in different parts of the world, in thousands of
different languages, on unlimited topics, and under widely
varying acoustic conditions. It is therefore difficult to imagine
that ASR technology will be capable of transcribing all such
spoken content with low enough WERs to enable good spoken
content retrieval. This is the motivation for the emergence of
other approaches in this area as explained below.

In recent years, researchers have begun to explore alternative
strategies to surmount the limitation of spoken content retrieval
performance imposed by the inevitable and uncontrollable
ASR errors, i.e., to find new rationales or frameworks for
spoken content retrieval beyond the conventional framework
of directly cascading a text retrieval engine on top of an ASR
module. Several innovative directions have been developed,
achieving retrieval performance less constrained by ASR ac-
curacies. These emerging research directions are what is being
referred to as “Beyond Cascading Speech Recognition with
Text Retrieval” in this overview article.

This article is thus intended to provide a thorough overview
of the concepts, principles, approaches, and achievements of
major technical contributions along these new directions, with
the hope that researchers can find it easier to explore additional
possibilities for future development in the promising area of
spoken content retrieval. Since this article is not going to cover
all aspects of spoken content retrieval, particularly the most
common approach of cascading speech recognition with text
retrieval, the reader is referred to several excellent tutorial
chapters and papers [1]–[3], [7]. Instead, this article will
focus on the distinct subject of “Beyond Cascading Speech
Recognition with Text Retrieval”. This will be categorized into
five major directions as very briefly summarized below.

1) Modified Speech Recognition for Retrieval Purposes:
This approach uses cascading ASR and text retrieval, but
the ASR module is optimized for retrieval performance.
This idea originated from the observation that retrieval
performance is not always directly related to ASR accu-
racy, which led to research aimed at jointly optimizing
ASR and retrieval, instead of doing them separately.

2) Exploiting Information not present in ASR outputs:
Some potentially useful information, such as the tem-
poral structure of the signal, is inevitably lost when
speech signals are decoded into phonemes or HMM
states in standard ASR. Therefore, it is possible to
augment ASR output with complementary information
to enhance retrieval performance.

3) Directly Matching on Acoustic Level without ASR:
When the query is spoken, it can be directly matched
with spoken content at the acoustic level, instead of at
a symbolic level, so that no standard ASR module is
needed. All the problems with ASR such as recognition
errors, the OOV problem, the need for matched anno-

tated corpora for training acoustic models, etc. are all
automatically eliminated.

4) Semantic Retrieval of Spoken Content: Spoken content
semantically related to the query does not always contain
the query terms. For example, with the query of “White
House” many target objects regarding the president of
United States may not include the query terms “White
House” but should be retrieved. Many semantic retrieval
techniques originally developed for text retrieval for
such purposes are useful, but very interesting approaches
specifically for spoken content were also developed.

5) Interactive Retrieval and Efficient Presentation of Re-
trieved Objects: The high degree of uncertainty in ASR
may be properly taken care of by efficient user inter-
action learned from spoken dialogues. However, spoken
content is difficult to display visually on a screen, and is
not as easy to, for example, scan and select by a user, as
compared to text. Thus, technologies such as automatic
key term extraction, title generation, summarization, and
semantic structuring of spoken content are crucial for
user-friendly interfaces that enable easier access to the
retrieved objects.

The remainder of this article is organized as follows.
In Section II, we first provide some necessary background
knowledge regarding spoken content retrieval. The five major
emerging directions, as summarized above, are introduced in
Sections III, IV, V, VI and VII. Finally, the concluding re-
marks and the prospects for this area are given in Section VIII.

II. BACKGROUND KNOWLEDGE

In this section we provide background material for spoken
content retrieval, primarily for the framework of cascading
speech recognition and text information retrieval, but also
for useful methods beyond the cascading framework. More
complete information can be found elsewhere [1]–[3], [7].

A. Task Description for Spoken Content Retrieval

Spoken content retrieval refers to the task whereby a user
enters a query, and the system retrieves the information the
user wishes to find from a spoken archive, or a large collection
of spoken audio data. The query entered by the user can be
either in text or spoken form. The user usually tends to use
short key terms as queries [48]. The retrieved items for spoken
content retrieval are audio signals (sometimes video). Using
spoken queries to retrieve text-based content is another widely
studied topic usually referred to as voice search [49], and is
out of the scope of this paper.

When the user enters a key term as the query, and the system
aims at returning the utterances containing the query term, or
the exact occurrence time spans of the query term, the task is
referred to as Spoken Term Detection (STD) [50]. Currently,
there are major research efforts for spoken content retrieval
that focus on this task [51], [52]. Sometimes this task is
also referred to as keyword spotting. However, conventionally
“keyword spotting” refers to a task with a pre-defined keyword
set, or all keywords are known in advance, but for STD the
query can be any term, including OOV words. STD can be
insufficient though, because a user can prefer to be offered all
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spoken content relevant to the query, regardless of whether the
query terms are included or not. The task of returning objects
semantically related to the query but not necessarily including
the query is referred to as semantic retrieval in this article, and
which was referred to as spoken document retrieval in some
research initiatives [15], [53]–[55]. For semantic retrieval, the
retrieval target can be either individual utterances or spoken
documents, where the latter includes multiple consecutive
utterances with a coherent topic. Topic boundaries of spoken
documents in a spoken archive are naturally given in some
cases, or can be found by topic segmentation techniques [56].

B. The Framework of Cascading Speech Recognition with Text
Retrieval

Fig. 1: The basic framework of cascading speech recognition
with text retrieval.

An intuitive approach for spoken content retrieval is to
use an ASR module to transcribe the spoken content into
text first, and then apply text information retrieval on the
transcriptions. There are usually two stages cascaded in typical
spoken content retrieval systems as shown in Fig 1, for either
STD or semantic retrieval. In the first stage (the upper half of
Fig 1), the spoken content is processed into transcriptions or
lattices by the ASR module, based on an acoustic model, a
lexicon, and a language model. In the second stage (the lower
half), after the user enters a query, the text retrieval engine
searches through the recognition outputs (either transcriptions
or lattices) to find the relevant time spans or utterances for
STD, or relevant utterances or spoken documents for semantic
retrieval. The returned time spans, utterances or spoken docu-
ments are assigned scores. Only objects with scores exceeding
a threshold are shown to the users, ranked according to the
scores.

C. Evaluation Metrics

Because the STD and semantic retrieval scenarios are
parallel, most evaluation metrics described here can be used
for both tasks, and therefore the objects here refer to either
time spans or utterances in STD, and utterances or spoken
documents in semantic retrieval. The evaluation metrics are
separated into two classes [57], as described next.

1) Evaluation of unranked retrieval results: The retrieval
performance is evaluated based on the correctness of the
retrieved objects only, while the order of the objects in the
returned lists is not considered.

Precision, Recall and F-measure are standard metrics. Preci-
sion is the fraction of retrieved objects which are relevant, and

Fig. 2: An example of a lattice.

recall is the fraction of relevant objects which are retrieved.
F-measure then integrates precision and recall. Another eval-
uation metric for unranked retrieval results is the Actual Term
Weighted Value (ATWV) [50] whose spirit is very similar
to F-measure. ATWV has been widely used to evaluate STD
systems today.

2) Evaluation of ranked retrieval results: Most commercial
search engines display their retrieval results as ranked lists, and
the user’s satisfaction is highly dependent on the order of the
list, so evaluating the order of the ranked list is important.

Precision@N is the precision measure of the top N returned
objects. R-precision is similar to precision@N, except that N
varies for each given query and is set to the total number of
relevant objects for the query in the target database. Mean
Average Precision (MAP) [58] is the mean of the Average
Precision over the testing queries. The average precision for
the retrieval results of a query is defined as in (1),

Average Precision =

∑n
k=1 precision(k)rel(k)

R
, (1)

where R is the number of relevant objects for the query in
the target database, n is the total number of objects in the
returned ranked list, precision(k) is the precision for the top k
objects in the list (i.e., Precision@k), and rel(k) is an indicator
function which equals to one if the item at rank k is a relevant
object, and zero otherwise. The value of MAP can also be
understood as the area under the precision-recall curve [57].

D. Lattices

STD based on the one-best transcription is relatively
straightforward because the text retrieval engine can search
through the transcriptions of the target spoken archive, and the
desired objects can be found. However, ASR errors degrade
performance, especially if the error rates are high. In order
to have better performance, given an utterance, the retrieval
engine may consider not only the word sequences with the
highest confidence, but all sequences of alternative hypotheses
whose confidences are high enough, organized as a lattice
as the example in Fig 2, in which each arc Wi represents
a word hypothesis. In this way, even though the one-best
transcription is not correct, it is possible to find the correct
words or word sequences in the lattice. Therefore, lattices are
usually preferred for STD, especially when the accuracy in
the one-best transcriptions is relatively low [9]. However, too
many incorrect word hypotheses in the lattices can also lead to
problems. Various approaches, based on posterior probabilities
or confidence measures, have been used to try to filter out some
of the incorrect word hypotheses, as explained below.

With lattices, an STD system usually returns the time
spans of arc sequences a whose hypotheses exactly match the
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query Q at the relevant time spans. The confidence scores
of the returned time spans are the posterior probabilities of
the corresponding arc sequences a [10]–[13], [59], [60]. The
posterior probability of an arc sequence a within the lattice of
an utterance u, L(u), is in (2).

P (a|u) =
∑

s∈L(u),a∈s

P (s|u), (2)

where s is an allowed word sequence in L(u) (s ∈ L(u))
containing the arc sequence a (a ∈ s), and P (s|u) the posterior
of the word sequence s given the lattice L(u) as in (3).

P (s|u) =
P (u|s)P (s)∑

s′∈L(u) P (u|s′)P (s′)
, (3)

where P (u|s) and P (u|s′) are the likelihoods for observing
the utterance u given the word sequences s and s′ based on
the acoustic model set, and P (s) and P (s′) are the prior
probabilities of s or s′ given by the language model.

For efficient search, the lattices should be indexed, and the
n-gram inverted index is one way to index the lattices [9],
[61]–[65]. In the n-gram inverted index, the information about
which word or subword n-gram appears in which lattice is
stored. Theoretically, the inverted index should contain all
possible word or subword n-grams with different lengths,
but when n is large, the number of distinct n-grams can be
huge. Another approach for indexing the lattice structures is
representing the lattices as weighted automata and building
an index for all of the possible sub-strings contained in the
lattices, which is considered more efficient than the n-gram
inverted index [66]. Under this general framework, the index
itself is a weighted finite state transducer (WFST) whose
inputs are queries represented as text strings, and the outputs
are lists of time spans and their scores [66], [67]. When the
input query is in audio form, it is also transcribed into a lattice.
All the text strings in the query lattice are then used to search
over the WFST index, and the final results are the union of
the results for each text string. This search process can be
efficiently implemented by representing the query lattice as a
WFST too, and composing the query WFST with the index
WFST [68], [69].

The arcs in the lattices can be gathered into clusters to form
sausage-like structures to make the indexing task easier and
reduce the memory requirements. Examples of such sausage-
like lattice-based structures include Confusion Networks (CN)
[70], [71], Position Specific Posterior Lattices (PSPL) [10],
[72], [73], and others [74], [75].

E. Out-of-Vocabulary Queries

If a word spoken in the audio is not present in the lexicon of
the recognizer, it can never be correctly recognized. Therefore,
if a query contains Out-of-Vocabulary (OOV) words, for STD,
the retrieval system cannot find the arc sequences of the query
even if the retrieval process is conducted on the lattices, since
the lattices are constructed with hypotheses of words in the
lexicon. Unfortunately, since the users usually enter queries
for those they wish to find more information about, the less
common words and topic-specific words constitute a good
portion of the queries, and many of such words are OOV.

Therefore, the percentage of OOV queries was found to be
higher than 15% on a real system [76].

Searching over the transcriptions or lattices based on sub-
word units has been a good approach to tackling the OOV
problem to some extent. Even though the OOV words can-
not be recognized, they can be represented as sequences of
subword units, therefore it is possible to find them if the
recognition outputs are also represented in subword units
[11]–[14], [77]–[86]. These include subword-based lattices
in which the arcs are subword hypotheses instead of word
hypotheses, or word/subword hybrid lattices, e.g. some arcs
in the lattices are word hypotheses, while some others are
subword hypotheses [77], [87], [88]. During retrieval, when
a query (OOV or not) is entered, it is also converted into a
sequence of subword units and then matched with the subword
unit sequences in these lattices. Given an OOV query in text
form, grapheme-to-phoneme (or letter-to-sound) techniques
are needed to estimate the subword sequences for the OOV
word [69], [83], [89]–[91], and including multiple alternatives
weighted by their confidences is helpful [69], [89]. Subword
units may offer better recall for OOV queries as discussed
above, very often at the price of lower precision. For example,
the subword unit sequence for a query may appear exactly in
some utterances consisting of completely different words.

A wide range of subword units has been used in subword-
based retrieval, roughly divided into two categories: linguis-
tically motivated units (obtained based on some knowledge
about the specific language, with good examples include
syllables [78], [92], [93], characters (for Mandarin) [78], [92],
[93], phonemes [80], or subphone units [84]), and data driven
units (derived from the corpora utilizing statistical and/or
information theoretic principles [14], [79], [81], [82], [94],
with the statistical morphs [81], [82], [94] learned from the
training corpus as a good example). There are certainly other
ways to address the OOV issues in addition to using subword
units [79], [95], but left out here for space limitation.

F. Score Normalization

For the unranked evaluation measures such as ATWV (Sub-
section II-C1), a threshold determining whether an object is
considered as relevant is required. However, the characteristics
of the queries are usually very diverse. A threshold value good
for one query may ruin the performance of another. One way
to solve this problem is to estimate a query-specific threshold
for each query [13], [96], and another way is to normalize
the score distribution of the objects for each query to generate
commensurate score distributions for different queries [41],
[42], [97]–[99].

G. System Combination

It has been well known in ASR that system combination
usually provides improved performance [24]. Because word-
based approaches suffer from OOV words and as a result have
lower recall, while subword-based approaches result in higher
recall but at the price of lower precision, an integration of
systems using different units may yield better performance.
Therefore, in addition to generating better recognition output
with system combination, it is also possible to perform the
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combination in the retrieval stage, for example, first generating
individual retrieval results from different recognition outputs
produced by different ASR systems, and then integrating the
retrieval results [78], [100]–[103]. The confidence scores of
each object can be the weighted sum of the confidence scores
based on each individual recognition output, with weights
either learned from training data [101], [102], or optimized
based on some evaluation metrics such as MAP [103], [104].
The score normalization introduced in Subsection II-F is also
helpful here. It was found that normalizing the confidence
scores from different recognition outputs before integrating
them may end up with better performance [42].

III. MODIFIED SPEECH RECOGNITION FOR RETRIEVAL
PURPOSES

In this section, we present the first major direction: modified
speech recognition for retrieval purposes.

A. Motivation

There are several other application tasks in which ASR has
been integrated with some downstream processing components
in tandem. For example, a spoken language translation (SLT)
system is a cascade of ASR and machine translation. In
these tasks, although the overall performance heavily depends
on the ASR accuracy, the relationship between the overall
performance and the accuracy of the ASR module is usually
not exactly in parallel. This is reasonable. The traditional word
error rate for ASR, which treats all word errors as equally
bad, is not necessarily the best measure in calibrating the
behavior of the ASR module in these different tasks. Obvi-
ously, different word errors have different impact on different
tasks (e.g. some function words are important for translation
while some others are not); the ASR module minimizing the
traditional word error rate therefore inevitably leads to only
suboptimal overall performance for different application tasks.
This is why it was found that in these cases learning ASR and
the downstream subsystems jointly by optimizing the overall
performance of the respective application tasks is better than
optimizing the ASR module and the downstream processing
separately [105]. For example, in SLT, ASR and machine
translation have been jointly learned to optimize the bilingual
evaluation understudy (BLEU) score [106].

For spoken content retrieval considered here, various stud-
ies also pointed out that the traditional word error rate is
not always directly related to retrieval performance. First,
the terminologies or topic-specific terms constitute a good
portion of the queries, so the recognition errors of these
terms may have larger influence on retrieval performance,
whereas the recognition errors for function words like “the”
and “a” have almost no impact. More precisely, the error
rates for named-entities were shown to be more correlated
with retrieval performance than the normal word error rates
treating all recognition errors equally [54], and error rates for
those more informative terms weighted by inverse document
frequencies were found to be a more accurate indicator for
the retrieval performance than the conventional word error
rates [107]. Also, it was pointed out that substitution errors
have larger influence on retrieval than insertions and deletions

because an substitution should be considered as two errors
for retrieval [108]; missing the query term in a relevant
document may make the document considered as irrelevant,
while adding a spurious word into an irrelevant document may
make the document considered as relevant. Moreover, ASR
errors replacing a word by a semantically dissimilar word
were shown to have more impact on retrieval performance
than a word with close meaning [109]. Another interesting
observation is that although better language models were
shown to reduce the ASR error rate, this did not always
translate to better STD performance [39], [110], [111]. This is
probably because language models tend to bias the decoding
towards word sequences frequently appearing in the training
data of the language models, but in the training data the
terminologies or topic-specific terms often used in the queries
are usually rare [111]. In addition, because usually lattices
instead of one-best transcripts are used in spoken content
retrieval, expected error rate defined over the lattices should
be in principle a better predictor of retrieval performance than
the error rate of one-best transcriptions [112].

Although it is not easy to try to handle each of the above
observations individually, it seems plausible that trying to
optimize the ASR module and the retrieval module jointly
based on some overall performance for retrieval may provide
additional gains as compared to simply minimizing the tradi-
tional word error rates for the ASR module alone, as will be
discussed more below.

B. Retrieval-Oriented Acoustic Modeling

Three related but different approaches for retrieval-oriented
acoustic modeling have been proposed in recent years. They
are briefly summarized here.

1) Weighted Discriminative Training: Discriminative train-
ing techniques such as minimum classification error
(MCE) [113] and minimum phone error (MPE) [30], [114]
training have been widely used to obtain better HMM acoustic
models, and recently the state-level Minimum Bayes risk
(sMBR) [115] training has been shown to be one of the most
effective discriminative training methods for acoustic models
with deep neural network (DNN). In these methods, a new set
of acoustic model parameters θ∗ is estimated by maximizing
an objective function F (θ)1,

θ∗ = arg max
θ
F (θ), (4)

F (θ) =

R∑
r=1

∑
sr∈L(ur)

A(wr, sr)Pθ(sr|ur), (5)

where ur is the r-th training utterances, wr the reference
transcription of ur, sr an allowed word sequence in the lattice
L(ur), A(wr, sr) the accuracy estimated for ur by comparing
sr with wr, Pθ(sr|ur) the posterior probability of the path sr
given ur as defined in (3) (here the acoustic model parameters
θ in the ASR module are included as a subscript to emphasize

1The MCE, MPE and sMBR can all be formulated as optimizing (5) with
different definitions for A(wr, sr) [116].
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this probability depends on θ2), and R is the total number
of utterances in the training set. Obviously, maximizing F (θ)
means maximizing the expected accuracy.
A(wr, sr) in (5) is usually defined in a way that the

accuracies of different words, phonemes or states are equally
weighted. However, because optimizing recognition accuracy
may not optimize the retrieval performance, the definition of
A(wr, sr) can be target dependent. In weighted MCE (W-
MCE) [117]–[120], the words in a pre-defined keyword set
can have higher contributions to A(wr, sr) than other words,
so the acoustic models can learn to prevent making mistakes
when recognizing the words in the keyword set. W-MCE
was shown to yield better retrieval performance than the
original MCE on Switchboard [118], [119]. With the same
principle, when training the DNN acoustic models, by making
those states belonging to the pre-defined keywords have more
contributions to A(wr, sr), the keyword-boosted sMBR [121]
is capable of detecting more keywords while reducing false
alarms on the NIST Open Keyword Search Evaluation in
2013 (OpenKWS13)3. Of course very often in spoken content
retrieval the user queries cannot be known beforehand, but
there exist ways to find the terms with higher probabilities to
be used as queries [122]. Therefore, it is certainly possible
to generalize these approaches to other scenarios of spoken
content retrieval.

2) Retrieval-Oriented Whole Word Modeling: The above
approaches emphasize the keywords, but the optimized acous-
tic models are also used for other words. A further step
forward can be taken by considering the keyword spotting
scenario, and training the whole-word models for the keywords
only if the keywords have sufficient examples in training
data. In this way, the whole-word models can better capture
the variability of the keywords and thereby deliver better
performance than the conventional phone-level models [123],
[124]. A good example in this category is the point process
model (PPM) used in keyword spotting, in which the keywords
are detected based on the timing of a set of phonetic events
(or “landmarks”) found in the speech signals [125]–[127].

Fig. 3: The framework of re-estimating acoustic model pa-
rameters to optimize the overall retrieval performance under
relevance feedback scenario.

2For P (s|u) in (3), the acoustic model scores P (u|s) is actually
computed based on the acoustic model parameters θ. Therefore, P (s|u) in
(3) depends on θ. This is not mentioned in Subsection II-D.

3An overview of NIST OpenKWS13 can be found at:
http://www.signalprocessingsociety.org/technical-committees/list/sl-tc/spl-
nl/2013-08/sltc-newsletter-august-2013-overview-of-the-nist-open-keyword-
search-2013-evaluation-workshop/

3) Retrieval-oriented Acoustic Modeling under Relevance
Feedback Scenario: Relevance feedback [128] well used in
text retrieval is useful to integrate the ASR and retrieval mod-
ules as a whole and optimize the overall retrieval performance,
rather than considering them as two cascaded independent
components [129]–[132], as shown in Fig. 3. When a query is
entered by the user, the system offers a ranked list of retrieved
objects to the user. If the user gives some feedback to the
system, for example, selecting items 1 and 3 as shown in
Fig. 3 (implying relevant) but not item 2 (probably implying
irrelevant), a new set of acoustic models can then be re-
estimated on-line based on the feedback. Because the scores
used for ranking the objects depend on the acoustic models,
the objects below item 3 not yet viewed by the user can thus
be re-ranked. In this way, the acoustic models can be “adapted
locally” considering the specific query and the corresponding
feedback entered by the individual user, resulting in “query-
specific” acoustic models, to be used for the unlimited number
of acoustic conditions for the spoken content. This framework
has been successfully applied on STD with utterances as the
retrieval target [129]–[132] as briefly explained below.

In STD with utterances as the retrieval target, when the
query Q is entered, all utterances u in the spoken archive are
ranked according to a confidence score Sθ(Q, u), where θ is
the set of acoustic model parameters. The expected frequency
of the query Q in the utterance u, Eθ(Q, u), is an example of
Sθ(Q, u).

Sθ(Q, u) = Eθ(Q, u) =
∑

s∈L(u)

N(Q, s)Pθ(s|u). (6)

Equation (6) is parallel to the core part of (5), except that
A(wr, sr) in (5) is replaced by N(Q, s), the occurrence count
of the query Q in an word sequence s which the lattice L(u)
allows. Given positive and negative (or relevant and irrelevant)
examples for a certain query Q from the user relevance
feedback as explained above, the system estimates a new set
of acoustic model parameters θ∗ by maximizing an objective
function very similar to (4) and (5) as in Subsection III-B1, but
with different definitions of F (θ) as explained below. With the
new set of acoustic models θ∗, (6) is modified accordingly4,
and the retrieved results not yet viewed by the user are re-
ranked.

The objective function in (4) can be the sum of the differ-
ences between all positive and negative example pairs here,

F1(θ) =
∑
ut,uf

[Sθ(Q, ut)− Sθ(Q, uf )], (7)

where ut and uf are respectively positive and negative exam-
ple utterances. By maximizing (7) as in (4), the system tries to
learn a new set of models θ∗ which better separates the scores
of relevant and irrelevant utterances.

Also, it has been shown that maximizing F2(θ) below
is equivalent to maximizing a lower bound of the retrieval

4With the new acoustic models θ∗ to update Sθ(Q,u) in (6), only
Pθ(s|u) in (6) have to be changed without generating new lattices, so updating
Sθ(Q,u) on-line is not computation-intensive [129].
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performance measure MAP in Subsection II-C2 [133], [134]:

F2(θ) =
∑
ut,uf

δ(ut, uf ), (8)

where δ(ut, uf ) is 1 if Sθ(Q, ut) > Sθ(Q, uf ), but 0 other-
wise. F2(θ) hence represents the number of positive/negative
example pairs for which the score of the positive example is
greater than that of the negative example. In addition, it will
be beneficial to include the large number of unlabelled data
in the training process by assuming the unlabelled objects are
irrelevant. F3(θ) below realizes the above idea.

F3(θ) = F2(θ) + ρ
∑
ut,uno

δ(ut, uno), (9)

where uno is an unlabelled utterance within the returned list,
and ρ is a weighting parameter. Experimental results showed
that all the object functions in (7) to (9) improved the retrieval
performance, F2(θ) was superior to F1(θ), while F3(θ) further
outperformed F2(θ) [129].

C. Retrieval-Oriented Language Modeling

In keyword spotting, it was found that boosting the prob-
abilities of n-grams including query terms by repeating the
sentences including the query terms in the language model
training corpora improved the detection performance in the
evaluations of DARPA’s Robust Automatic Transcription of
Speech (RATS) program [135] and the NIST OpenKWS13
Evaluation [136]. Similar concept was also used in neural net-
work based language models (NNLM) [28], whose input is a
history word sequence represented by a feature vector, and the
output is the probability distribution over the words. NNLMs
are trained by minimizing an objective function representing
the differences between words in the training corpus and the
output distributions given their history word sequences. It was
found that NNLM decreased the word error rate and perplexity,
but may hurt STD performance at the same time [39], so new
training strategy for NNLM was proposed [47]. In the new
strategy, if a word is less frequent in the training corpus (which
has higher probability to be the query term), in the objective
function the difference measure obtained between this word
and the output distribution of NNLM was weighted, and thus
the NNLM learned to prevent making mistakes on the words
with larger weights. It was found that this training strategy
improved the STD performance on Vietnamese in the NIST
OpenKWS13 Evaluation [47]. NNLMs trained in this way
were also found to offer higher word error rates and perplexity
compared with the conventional NNLM, which is another
evidence to support that ASR module specially designed for
spoken content retrieval is a reasonable direction.
D. Retrieval-Oriented Decoding

It has been proposed that the search with OOV queries
can be achieved in two steps [110]. In this framework, each
utterance has a word-based and a subword-based lattices.
When an OOV query is entered, in the first step, a set of
utterances which possibly contain the OOV query is obtained
by searching over the subword-based lattices. Decoding these
utterances with a new lexicon including the OOV terms in the
query and then searching over the new lattices thus obtained

can yield more precise results compared to the subword-based
retrieval, but generating new lattices on-line is not tractable.
Therefore, instead of generating new lattices, this approach
inserts the word arcs whose hypotheses are the OOV terms
into the word-based lattices. The time spans of these arcs are
those obtained in the first step. Then the word-based lattices
are re-scored to obtain the acoustic likelihoods and language
model scores of the new arcs, and the second step retrieval is
conducted on the re-scored lattices. Here the system only re-
scores the existing lattices instead of decoding the utterances,
so this framework can be realistic. For OOV queries, this
framework achieved 8.7% relative improvement over subword-
based retrieval on MIT iCampus lecture set [110].

Sometimes even in-vocabulary query terms in the utterances
cannot be found in the lattices, because the hypotheses for
those in-vocabulary query terms have relatively low language
and/or acoustic model scores, and therefore they are pruned
when generating the lattices. This is especially serious for
keywords which is rarely used and thus have low language
model scores. Subword-based retrieval may address this issue
as mentioned, but the retrieval results based on subwords can
be noisy with poor precision. Another solution to this problem
is to increase the depth of the word lattices, but this may
seriously increase the computation and memory requirements.
A more realistic solution is to give different words different
pruning thresholds during decoding [97], [135]5. By giving the
interested keywords much lower pruning thresholds compared
with normal terms, this method obtained better performance
than the subword-based solution [97].

E. Retrieval-Oriented Confusion Models

Some effort has been made to model the occurrence of the
recognition errors in a systematic way, referred to as confusion
models here, and to try to optimize such models to have better
retrieval performance. There can be at least three ways to
achieve this goal: Query transformation [95], [137], [138] (to
transform the word or subword sequence of each query into
the sequences that the query tends to be mis-recognized to,
and the new set of sequences are used to retrieve the lattices),
Spoken Content transformation [139]–[141] (to transform the
recognition output for the spoken content instead of the
query), and Fuzzy match [142]–[146] (defining a distance
between different word or subword sequences, and the lattices
containing word or subword sequences sufficiently close to the
query being retrieved).

In all the above, a confusion model describing how the
confusion of a word or subword sequence is to the other is
needed. Usually this model is represented as a P by P matrix,
where P is the number of subword units considered6. In this
matrix, the value of the element at i-th row and j-th column
indicates the probability that the i-th subword unit may be
misrecognized as the j-th subword unit (therefore this matrix
is not symmetric). The confusion between the word or subword
sequences can then be obtained. It has been proposed to learn
such confusion models or matrices by optimizing the retrieval

5Also called white listing [97] or keyword-aware pruning [135].
6Although the confusion of subword n-grams or words can be considered,

they are not widely used because of lack of training data.
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evaluation metrics using a set of training queries and the
corresponding audio [137], [139], [140]. For the experiments
of STD on Fisher corpus, the model thus learned yielded 11%
relative improvements in terms of Figure of Merit (FOM) over
the baseline without transformation [140].

F. Jointly Optimized Discriminative Model Integrating Recog-
nition and Retrieval

A very interesting different approach is to try to define a
function SJ(Q, u) which can map the acoustic features of an
utterance u and a query Q to a confidence score SJ(Q, u),
to be used to rank the utterances just as Sθ(Q, u) in (3). In
this way the speech recognition and retrieval are integrated
in a single function SJ(Q, u), which can be optimized by
learning from some overall retrieval goal. Encouraging results
have been obtained on STD with some preliminary approaches
along this direction [147]–[151]. In these approaches, the
above confidence score is formulated as in (10).

SJ(Q, u) = arg maxh∈uw · φ(Q, h), (10)

where h is any signal segment in the utterance u (h ∈ u),
φ(Q, h) is the vector of a set of features describing the
likelihood that Q appears in h (explained below), w is a weight
vector to be learned from training data, and w · φ(Q, h) is
interpreted as the confidence that Q appears in h. In (10),
the score of the most confident signal segment h, that is,
the signal segment h with the largest w · φ(Q, h) among all
possible h, is the confidence score for the utterance u. The
feature vector φ(Q, h) can include various kinds of infor-
mation useful for STD, such as the outputs of the phoneme
classifiers based on different models (e.g. gaussian mixture
model, recurrent neural networks, etc.) and the outputs of
articulatory feature classifiers [147]–[151]. Although there is
an exponential number of possible segments h in u which may
make (10) intractable, with carefully designed feature vector
φ(Q, h), dynamic programming algorithm can efficiently solve
(10) [147]. With a set of training queries and their relevant
and irrelevant utterances, w can be learned to maximize the
evaluation metrics of STD. Because only a single vector w
is used here to model both ASR and retrieval in a very
different framework, it may not be easy to compare directly
these approaches with conventional approaches using state-of-
the-art ASR modules. However, these approaches have been
shown to work very well in the setting of very limited training
data, for which it may not be feasible to train an ASR
module reasonably well [147], [148]. For the experiments on
Switchbroad, the approach based on (10) outperformed the
baseline with an ASR module using phone-based HMMs when
the training audio size is over a range from 500 to 5000
utterances [148].

IV. EXPLOITING THE INFORMATION NOT PRESENT IN
STANDARD ASR OUTPUTS

In this section, we present the second major direction:
exploiting information not present in ASR outputs.

A. Motivation

In addition to the posterior probabilities from the lattices
in (2) to be used as the confidence scores for retrieval, other

useful cues for confidence score estimation were found in the
lattices. One example is the context of the retrieved objects
within the lattices [152]–[156]. Another example is the outputs
of an OOV detector which detects the presence of an OOV
word by analyzing the score distributions of the arcs in the
lattices [157]. If the input query is OOV, and a time span is
detected as an OOV word, the corresponding confidence score
can be boosted [158].

On the other hand, when speech signals are decoded into
transcriptions or lattices in ASR, much of useful information
are no longer present, for example, the temporal variation
structure of the signals. Therefore, when the retrieval processes
were applied on top of the ASR outputs, it is a good idea to
consider if the information not present in ASR outputs can be
used in enhancing the retrieval performance. A good example
is to include prosodic cues, and another series of work tried
to perform query-specific rescoring using such information.

B. Incorporating Prosodic Cues

Duration related cues have been shown useful, such as
the duration of the signal segments hypothesized to be the
query divided by the number of syllables or phonemes in
the query (or the speaking rate), and the average duration
of the same syllables or phonemes in the target spoken
archive [149], [150], [159]–[162]. This is because extremely
high or low speaking rate or abnormal phoneme and syllable
durations may imply that the hypothesized signal segment is a
false alarm. The maximum, minimum and mean of pitch and
energy in hypothesized signal segments were also found to be
useful [159], [160], since extreme values of pitch and energy
usually cause more ASR errors [163], thus helpful to identify
the false alarms. Moreover, it was found that the results of
landmark and attribute detection (with prosodic cues included)
can reduce the false alarm [164]. Thorough analysis for the
usefulness of different kinds of cues also indicated that the
cues related to duration are very useful cues [159], [160].

To integrate the different cues such as those mentioned
above, regardless of whether obtained in ASR outputs or not,
the STD problem has been formulated as a binary classification
problem [159], [160], [165]. Each candidate object x is
represented as a feature vector f(x), with each component in
f(x) for a cue (e.g. posterior probabilities, confidence scores,
duration or pitch related features, etc.). Then a classifier can
learn to classify those objects x to be true or not based on its
feature f(x) if a set of training queries and their associated
true/false examples are available. Such classifiers can be any
kind of binary classifiers including support vector machines
(SVMs), deep neutral networks (DNNs) and so on.

C. Query-specific Rescoring based on Pseudo-relevance Feed-
back (PRF)

In STD after a query is entered, the system can focus on
locating the time spans of only the specific query terms in
the spoken archive, not any other phoneme sequences or any
other terms or words. This implies the possibility of learning
query-specific rescoring approaches; i.e., the goal is focused
on simply exploiting the specific acoustic characteristics of
a given query. This is quite different from the conventional
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ASR, for which the occurrence of all possible phonemes and
words have to be considered. The concept of such query-
specific rescoring makes it possible to consider the acoustic
characteristics of the specific query which is not present
in ASR transcriptions. This is easier to achieve (the scope
is limited) than to consider the situations for all possible
phonemes or words. Although this sounds impractical since we
need training data for each query, but can actually be realized
with pseudo-relevance feedback (PRF). Also, different from
ASR tasks in which only the input utterance is focused on,
for the STD tasks, all signal segments hypothesized to be the
query in the whole target spoken archive can be explored.

Pseudo-relevance feedback (PRF), also known as blind
relevance feedback, has been successfully applied on different
retrieval domains including those for text [166]–[170], im-
age [171], [172] and video [173]–[175]. When applied in STD
scenario, it can be used to obtain a query-specific training set
to train query-specific rescoring approaches. The framework is
shown in Fig 4. A first-pass retrieval is performed first using
some scores such as those in (2) or (6), with results not shown
to the user. A small number of retrieved objects with the high-
est scores is then taken as “pseudo-relevant”, and sometimes
some objects with the lowest scores as “pseudo-irrelevant” in
addition. Not all these examples are labelled correctly, but
they should have signal characteristics reasonably similar or
dissimilar to the possible acoustic characteristics of the query
since they are found from the whole target spoken archive in
the first-pass retrieval. These positive and negative examples
are then used to train a query-specific rescoring model to
rescore and re-rank the objects in the first-pass retrieved list.
The system finally displays the re-ranked results to the user.
Several ways to realize this query-specific rescoring are in the
next subsection.

Fig. 4: The pseudo-relevance feedback (PRF) framework of
training query-specific rescoring approaches for spoken term
detection (STD).

D. Different Approaches for the Query-specific Rescoring

1) Query-specific Detector: One way to realize query-
specific rescoring is to learn the query-specific detectors7,

7The concept is similar to “utterance verification” or “confidence score
estimation” [176], although the scenarios may not be the same.

Fig. 5: Feature vector representations. Left half: a hypothe-
sized region of the query term Q from the lattice. Right half:
the feature vector f(x).

whose inputs are the hypothesized regions for a specific query,
and the outputs are whether the hypothesized regions are
correct [177], [178]. Here the hypothesized region is defined as
the segment of acoustic vectors (e.g. MFCCs) corresponding
to an arc sequence a in the lattice, which has the highest
confidence score among all arc sequences in the lattice with
their hypotheses being the query Q as shown in the left half
of Fig. 5. In the right half of Fig. 5, a hypothesized region
is divided into a sequence of divisions based on the HMM
state boundaries obtained during the lattice construction. Each
division is then represented by a vector which is the average of
the acoustic vectors in it. All these averaged vectors in a hy-
pothesized region are then concatenated to form a feature f(x)
for the hypothesized region x. For l-state phoneme HMMs and
a query term Q including m phonemes, the dimensionality of
such a feature vector f(x) is m× l times the dimensionality
of the acoustic vectors. The feature vector f(x) thus capsules
the acoustic characteristics of the hypothesized region. Note
that much of such information is lost when the acoustic
vector sequence is transformed into the lattice by ASR. These
features for the positive and negative examples can then be
used to train an SVM or DNN classifier. It was shown that
the re-ranked results yielded significant improvements over the
first-pass results on both course lectures and broadcast news
with SVM [177], and on TIMIT corpus with DNN [178]. This
approach can be equally applied when the retrieval objects are
utterances. The only difference is that the first-pass retrieved
results in Fig. 4 are the lattices in the left half of Fig. 5
for the latter, but directly the hypothesized regions for the
former. Below we always assume the retrieval target is the
hypothesized region for simplicity, although all mentioned are
equally applicable for utterances.

2) Exemplar-based Approach: Exemplar-based approaches
have been identified as a new paradigm which may enhance the
conventional HMM-based ASR [31]. The limited number of
parameters in HMMs are inadequate for representing the fine
details of the training audio signal set. Greatly increasing the
number of parameters may make the model over-fitted with
the training data. It was thus proposed to use the similarity
between the utterances being considered and a set of word
or phoneme examples in transcribing the utterances. Such
approaches were shown to be able to improve the conventional
HMM-based ASR, and referred to as the exemplar-based or
template-based ASR [31]. Such information as temporal struc-
tures or trajectories of signals can be exploited in this way [31],
hopefully having the potential to address the deficiency of
conventional HMMs.
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In STD, the above exemplar-based techniques have also
been considered. For an input query, assume some signal
segments corresponding to the query terms and some others
corresponding to other terms but easily mis-recognized as the
query terms by conventional ASR techniques are available
as positive and negative examples. These examples can help
to rescore and re-rank the hypothesized regions obtained
in the first-pass retrieval. For example, those hypothesized
regions more similar to the positive examples than the negative
examples are more likely to be truly relevant. This is formally
formulated as below. Given N training examples for a given
query Q, {xQi }Ni=1, each has a label yi ∈ {−1, 1}, where 1
for positive and −1 for negative examples. The confidence
for a hypothesized region x being the query Q can then be
represented as (11).

S(Q, x) =

N∑
i=1

wiW (x, xQi ), (11)

where W (x, xQi ) represents the similarity between the hy-
pothesized region x and the example xQi , and wi are the
weights for example xQi . Intuitively, wi should be close to
the label yi, i.e., 1 for positive and −1 for negative examples.
Practically the weights {wi}Ni=1 can be learned [179]8. There
are also various ways to obtain the similarity W (x, xQi ) be-
tween a hypothesized region and an example, both represented
as acoustic vector sequences. One way is to represent the
acoustic vector sequences by fixed length feature vectors as in
Fig 5 [180], and then compute the similarity between the two
fixed length feature vectors. Another way is to use dynamic
time warping (DTW) to evaluate the similarity between two
acoustic vector sequences with different lengths [181]–[183].
DTW will be further discussed later on in Section V. This
approach was shown to yield significant improvements on
both course lectures [181] and broadcast news [184]9. This
approach was also shown to offer improvement additive to the
retrieval-oriented acoustic modeling under relevance feedback
scenario in Subsection III-B3 [129].

E. Graph-based Approach

The query-specific rescoring based on PRF in the last
subsections can be taken one step further. It is reasonable to
expect that globally considering the similarity structure among
all hypothesized regions obtained in the first pass, rather than
relying on the assumptions of examples in PRF, can better
re-rank the hypothesized regions. This can be formulated as a
problem using graph theory [180]–[183], [185]. As shown in
Fig. 6, for each query Q a graph is constructed, in which each
node x represents a hypothesized region for the query Q from
the first pass, and two nodes are connected if the similarity
between the two corresponding hypothesized regions is high.
The edge weights W (x, x′) between the nodes x and x′ are
the similarity between them, as in the left half of Fig. 6, which
can be estimated with different approaches including DTW.

One way to exploit the graph structure in Fig. 6 is to
use the minimum normalized graph cut [180]. The minimum

8This approach is referred to as kernel-based binary classifier [179].
9In these experiments, the weights wi were simply set as wi = 1,−1

for positive and negative examples.

Fig. 6: The graph constructed for all hypothesized regions
obtained in the first-pass retrieval with a query Q. Each node
in the graph represents a hypothesized region, and the edge
weights represent the acoustic similarities between the nodes.

normalized graph cut [186] splits the nodes in a graph into
two disjoint groups, where the inter-group edge weights are
low, and the inner-group edge weights are high. Since the true
hypothesized regions corresponding to the query term should
have relatively similar acoustic characteristics, or be strongly
connected on the graph, so minimum normalized graph cut can
separate true and false hypothesized regions into two groups.
To determine which group is for the true hypotheses, the
system samples one node and asks the user to label whether
it is true. Minimum normalized graph cut also provides each
node a score representing the tendency of belonging to the
two groups [180], so the hypothesized regions can be ranked
according to this score.

Another way to exploit the graph structure is using the
random walk [181]–[183], [185], which does not use any
labelled data. The basic idea is that the hypothesized regions
(nodes) strongly connected to many other hypothesized regions
(nodes) with higher/lower confidence scores on the graph
should have higher/lower scores. The original confidence
scores of the hypothesized regions, which is based on the
posterior probabilities from the lattices, therefore propagate
over the graph, and then a set of new scores for each node
are obtained accordingly. This approach is similar to the very
successful PageRank [187], [188] used to rank web pages
and compute an importance score for each page. Similar
approaches have also been found useful in video search [189],
[190] and extractive summarization [191], [192], in which the
similarities are used to formulate the ranking problem with
graphs.

In this approach, given the graph for a query Q, each
hypothesized region x is assigned a new confidence score
evaluated with graph SG(Q, x),

SG(Q, x) = (1− λ)S(Q, x) + λ
∑

x′∈N(x)

SG(Q, x′)W ′(x′, x),

(12)
where S(Q, x) is the original confidence score from lattices
such as those in (2) or (6), N(x) is the set of nodes having
connection with x, x′ is a node in N(x), and W ′(x′, x) is the
edge weight between x′ and x, but normalized over all edges
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connected to x′:

W ′(x′, x) =
W (x′, x)∑

x′′∈N(x′)W (x′, x′′)
, (13)

where W (x′, x) is the similarity between x′ and x. λ in (12) is
an interpolation weight. Here (12) implies SG(Q, x) depends
on two factors, the original scores S(Q, x) in the first term and
the scores propagated from similar hypothesized regions x′ in
the second term. The weight normalization in (13) implies
the score of node x′ is distributed to all nodes x′′ having
connection with x′. Although it is possible to use SG(Q, x)
in (12) for ranking directly, integrating SG(Q, x) with the
original score S(Q, x) again by multiplying them was shown
to offer even better performance.

The graph-based approach with random walk was shown
to yield dramatic improvements on retrieval over a spoken
archive produced by a single speaker, for example, course
lectures. This is reasonable because for the same speaker the
similarity among realizations of the same query terms are
relatively high, based on which the random walk is able to
very well enhance the confidence scores. In the experiments
on lectures for a course taught by a single instructor, 21.2%
relative improvement for speaker independent recognition was
obtained.It also yielded 13% relative improvement for a set
of OOV queries on audio recordings of McGill course lec-
tures [193] with several speakers [185], and 6.1% relative
improvements on broadcast news with many speakers [184].
The graph-based approach with random walk was also shown
to outperform the exemplar-based approach with examples
from PRF [181]. This is because the exemplar-based approach
only considers those information for objects most confident to
be relevant or irrelevant, whereas the graph-based approach
globally considers all the objects retrieved in the first pass.

V. DIRECT MATCHING ON ACOUSTIC LEVEL WITHOUT
ASR

In this section, we present the next major direction: direct
matching on acoustic level without ASR.

A. Motivation

There can be either text or spoken queries. Entering the
queries in spoken form is attractive because this is the most
natural user interface. Smartphones and hand-held or wearable
devices make spoken queries an even more natural choice.
Retrieving spoken content with spoken queries is also re-
ferred to as query-by-example. In principle, query-by-example
is more difficult than using text queries because both the
content and the queries are to be recognized and include
recognition errors. Since the spoken queries are usually short
without context information, often including OOV words and
entered under uncontrolled conditions, resulting in relatively
low recognition accuracies. However, the spoken queries also
offered a new direction which was never possible for text
queries; that is, because both the content and the queries are
in speech, it becomes possible to match the signals directly
on acoustic level without transcribing them into phonemes
or words. Spoken content retrieval becomes possible without
ASR.

Giving up ASR inevitably gives up much useful information
offered by ASR, but also implies all the difficult problems ever
considered for retrieval with ASR are automatically bypassed
or eliminated. Such problems include the difficult problems
of OOV words, recognition errors, low accuracies due to
varying acoustic and noisy conditions, as well as the need
for reasonably matched corpora (and annotating them) for
training the acoustic/language models to transcribe the spoken
content. For low-resourced languages with scarce annotated
data, or languages without written forms, recognition seems
even far from possible. In particular, it makes great sense to
bypass the need for the huge quantities of annotated audio data
for supervised training of acoustic models. This is why this
direction is also referred to as unsupervised retrieval of spoken
content, or unsupervised STD. This direction exactly matches
the target of the Spoken Web Search (SWS) task [194]–
[197]10, a part of the MediaEval campaigns [198], and some
results in the program will be mentioned here. A complete
overview of the approaches developed in SWS in 2011 and
2012 is available [199].

The work along this direction can be roughly divided into
two categories: DTW-based and model-based. The former
compares the signals by template matching based on the very
successful approach of dynamic time warping (DTW), while
the latter tries to build some models for the signals and wish
to benefit from the nice properties of acoustic models.

B. DTW-based Approaches

The most intuitive way to search over the spoken content for
a spoken query is to find those audio snippets that sound like
the spoken query by directly matching the audio signals. Since
the audio events in speech signals can be produced at different
speeds with different durations, the spoken content and the
spoken query are hardly aligned at the same pace. The dynamic
time warping (DTW) approach [200] was invented to deal
with exactly such problems. DTW allows a nonlinear mapping
between two audio signals or feature vector sequences, namely
the query sequence and the document sequence, and produce
a minimum distance between the two based on an optimal
warping path found by dynamic programming.

Assume we are given a query sequence X = (x1, . . . ,x|X|)
and a document sequence Y = (y1, . . . ,y|Y|), where xi and
yi are frame-based acoustic feature vectors (e.g. MFCCs).
Let ρ(xi,yj) be the pairwise distance between the acoustic
feature vectors xi and yj , also referred to as local distance.
The goal of DTW is to find a warping path on the (i, j)-plane
as in Fig. 7 with the lowest total distance accumulating all
ρ(xi,yj) along the path from (1, s) to (|X| , e); this represents
the matching of X to (ys, . . . ,ye). For the circled path in
Fig. 7 s = 1 and e = 10. The spoken documents can than be
ranked based on this lowest distance.

1) Segmental DTW: The classical DTW algorithm simply
tries to match two sequences X and Y primarily end-to-
end [201], different from the task considered here. Because
the spoken query X is usually only a small part in a spoken

10It was renamed as “Query by Example Search on Speech Task”
(QUESST) in 2014.
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Fig. 7: The matching of query X to document Y (|X| = 20,
|Y| = 10). With segmental DTW, the diagonal band starting
from (1, 1) with bandwidth set to 4 gives each point on the
diagonal path i = j (squares) an allowance of 4 points on
both sides for both i and j (rectangles), and therefore confines
the warping paths to the darkened region. Slope-constrained
DTW permits a warping path (circles) that goes from (1, 1)
to (20, 10) if each frame in query X is allowed to match at
most 2 frames in document Y, and vice versa, but there is no
such path in segmental DTW with bandwidth equal to 4.

document Y, we need to locate the spoken queries in the
documents. This is why segmental DTW is needed.

The segmental DTW was first used in unsupervised discov-
ery of speech patterns from spoken documents [202], [203],
but it can also be used here. The naming of “segmental”
refers to partitioning the (i, j)-plane into several overlapping
diagonal bands each with a different starting point and a band-
width. For example, in Fig. 7, a diagonal band starting from
(1, 1) with bandwidth 4 is shown in dark points. Segmental
DTW then iterates through all diagonal bands, finding one
optimal warping path with minimum accumulated distance
within each diagonal band. Each diagonal band serves as a
candidate location of the spoken query, with allowed temporal
distortion defined by the width of the band.

2) Subsequence DTW and Slope-constraints: In segmental
DTW, the spoken query and the matched signal segment in the
spoken document can have lengths differ at most by the width
of the diagonal band. It works fine with signals of similar
speaking rates, but could be problematic in real world applica-
tions. Observations over the audio data indicate that the length
of the spoken query can be more than twice as long as the same
term in the spoken content such as broadcast news, specially
because users tend to slow down their voice query to make
the pronunciations clear [204]. When the speaking rates differ
widely, the longer the query, the wider the duration difference.
In order to handle this problem, subsequence DTW [201],
[205]–[207] gives up the diagonal bands of segmental DTW,
but considers the best match between the query sequence and
every possible subsequence of the document exhaustively by
dynamic programming. This approach turned out to be very
useful.

Another approach is to apply to the local distance a penalty
multiplicand, which exponentially grows with the number of
query frames matched to the same document frame [208], or
the local slope of the warping path. Similar penalty is applied
when multiple document frames were mapped to the same
query frame, but the collected distance for the same query
frame is further normalized by the count of the corresponding
document frames; this ensures the final accumulated distance
is equally contributed by every frame in the query regardless
of how many frames was mapped to each of them. A similar
approach, slope-constrained DTW, was also proposed [204].
In this approach, each frame in query X is allowed to match
at most a certain number of frames in document Y, and
vice versa. For example, as shown in Fig. 7, the warping
path (circles) is for slope-constrained DTW that each frame
in document Y is allowed to match at most 2 frames in
query X. It was shown that such slope-constrained DTW
offered similar retrieval performance to segmental DTW, but
greatly outperformed segmental DTW when the speaking rate
difference is large [204].

3) Acoustic Feature Vectors and Distance Measures used in
DTW: It is important how one specifies xi, yj and evaluates
the local distance ρ(xi,yj). The simplest way is to use MFCCs
for xi, yj and Euclidean distance for ρ(xi,yj), but this
approach implies that MFCC sequences with large distances
are from different terms, which is not necessarily true. The
posteriorgrams (vectors of posterior probabilities for a set of
classes) have been used by most work to incorporate the
acoustic feature distribution into distance measures.

Gaussian posteriorgrams have been used for xi and yj
[209]–[211]. To generate Gaussian posteriorgrams, a Gaussian
mixture model is trained, and each signal frame is then
represented by the vector of the posterior probabilities of being
generated from each Gaussian. The Gaussians can be viewed
as anchor points in the MFCC space, and the posterior proba-
bility translates to the normalized distance to the mean of each
Gaussian. It was also proposed to use an multilayer perceptron
(MLP) to transform the MFCCs into phonetic posteriors [208].
Though supervised MLP training was needed in this way, the
MLP trained from another annotated corpus (probably in a
different language) can be used instead [206], [212], [213]
because the MLP’s phone posterior output can always serve
as features, even for a phone set different from that for the
target audio. The bottle-neck features derived from MLP can
further be used to generate Gaussian posteriorgrams [214],
[215]. The local distance for such posteriorgrams, Gaussian
or phonetic, is very often defined as the negative log of the
inner product;

ρ(xi,yj) = − log(xi · yj). (14)

Other concepts of defining the features were also proposed,
including model posteriorgrams (will be mentioned again in
Subsection V-E) [216], [217], RBM posteriorgrams [218]
and intrinsic spectral analysis (ISA) features [219], [220].
The performance comparison for spoken term discovery task
was reported for different feature representations and distance
measures [221].



13

C. Speed-up Approaches for DTW
One of the major issues of DTW is the high computation

demand. One way to speed up DTW is to parallelize the task
by distributing the workload to multiple processors on multi-
core servers [222] or graphics processing units (GPUs) [223].
The other way is to develop some speed-up approaches to
reduce the computation requirement of DTW, sometimes at the
price of degraded performance. In most cases, the performance
can be preserved by performing a second pass rescoring
using DTW on the reduced search space after the first pass
filtering using speed-up approaches. The speed-up approaches
are discussed below.

1) Segment-based DTW: Both the spoken query and the
spoken documents are divided into segments of acoustically
similar frames ~xi and ~yj , where ~xi is the i-th segment of
the query, and ~yj is the j-th segment of the document, each
consisting of a number of frames. Hence, the DTW is reduced
to finding a warping path in the (i, j)-plane of segments
based on a carefully designed local distance of ρ(~xi, ~yj).
Everything for the segment-based DTW is very similar to the
original frame-based DTW, except the path searching time is
reduced significantly [224]. The signal segments can be gen-
erated using the hierarchical agglomerative clustering (HAC)
approach [225] by minimizing the total variance greedily when
merging two adjacent clusters into one in each iteration. This
approach provides a much faster, though coarser, first-pass
filtering for selecting possible hypothesized utterances to be
used in second-pass rescoring using frame-based DTW.

2) Lower bound estimation: This approach has been pro-
posed for DTW-KNN (K-nearest neighbor) search [226], and
used in segmental DTW for STD [227], [228]. The basic
idea is to compute the lower bound of the local distance for
each frame in the query off-line, which can be achieved by
taking the maximum value of the posteriorgram in the window
without knowing the query frame. Since the goal is to find
the K-nearest snippets in the spoken archive, the snippets are
sorted by their lower bound estimation. Starting from the one
with the least lower bound, snippets are rescored again and
put into a priority queue of size K. The rescoring process hits
an early break when the next snippet to run the DTW has
higher lower bound than the K-th smallest DTW distance in
the queue.

3) Indexing the Frames in the Target Archive: In addition
to the path search, another heavy computational cost is from
the local distance calculation. To find the path on the (i, j)-
plane, the local distance for almost every pair of a frame in the
query and that in the spoken documents in the target archive
is to be computed. This requires a great deal of computation,
even though some frames in the archive are very dissimilar to
others. A more clever way is to try to index all the document
frames in the target archive. Then for each frame in the query,
only those frames that are similar enough to it are to be
extracted for local distance calculation.

A very efficient frame indexing approach was proposed
for this purpose [229], [230] by applying locality sensitive
hashing techniques on the frames [231], which was shown
to be a good approximation for the cosine similarity. Using
randomly generated hyperplanes, the posteriorgram space is

decomposed into many cone-like regions. These hyperplanes
serve as hashing functions, mapping posteriorgrams to one
of its sides. For example, by using 64 random hyperplanes,
posteriorgrams are transformed into 64 bit values, each bit
corresponding to the sides of the hyperplane (the bit value is 1
if the posteriorgram is on one side of the hyperplane, and 0 if it
is on the other side). A much simpler approximation for inner
product can then be performed by the exclusive-or operation
instead of the hamming weight calculation. The posteriorgrams
in the documents are therefore sorted by the integer values of
their hash values. When searching for document frames similar
to a query frame, document frames with integer values within
a predefined radius is returned; thus the higher bits are assured
identical to the query frame’s hash value, whereas lower
bits may differ. Since all bits are equally important, several
permutations of hash values were performed and sorted; all
document frames obtained with each of these permutations
are returned if the value is within the radius. This provides a
fast filtering to reduce the search space from the whole target
content to a limited set of hypothesis frames. Experiments
showed that a factor of more than three thousands of real
time speedup was achieved by this approach.

4) Information Retrieval based DTW (IR-DTW): This ap-
proach [232] was proposed to further speed up the DTW
process after the indexed frames in the documents in the target
archive were retrieved by the hashing techniques as described
above. Instead of going through all points on the (i, j)-plane to
check whether a document frame should be retrieved, a vector
of retrieved document frames and a vector of extendable path
end locations were recorded. In this way the complexity is no
longer proportional to the total length of the target archive,
but limited by the number of frames returned by the frame
indexing approach. By applying path constraints similar to
the conventional DTW, and using the frame matching count
as a simple measure to estimate the path distance, hypotheses
similar to the query can be identified.

D. Modeling Acoustic Patterns for Model-based Approaches

Matching the speech frames with DTW-based approaches is
precise and effective, but without ASR much of the underlying
linguistic information has been overlooked in the matching
process. For example, the speech signals for the same word
but produced by different speakers may be very different, as a
result the DTW-based approaches may not be able to identify
they are referring to the same word, although this is easy with
ASR if the recognition is correct.

The above problem comes from the fact that the acoustic
characteristics of the speech signals for the same phoneme
may vary significantly. In ASR, we use Gaussian mixture
models (GMM) or deep neural network (DNN) to model
the variations or distributions of such acoustic characteristics
based on states in HMMs. The warping function in DTW
effectively plays the role of state transitions in HMMs to
some extent, but the GMM/DNN modeling of the acoustic
characteristic distributions in ASR is actually missing in DTW-
based approaches. The posteriorgrams obtained with either
GMM or DNN certainly represent ways to take care of
the roles of GMM/DNN, although these posteriorgrams are



14

generated primarily in an unsupervised way and are thus less
precise.

On the other hand, speech signals are made of patterns much
longer than frames, and the repetitions of similar patterns
form the concept of phonemes, syllables and other phono-
logical units. Higher level linguistic units such as words or
phrases are then composed of such low level phonological
units, and it is these higher level linguistic units which carry
semantic information, including the queries we consider here.
With a highly effective ASR, speech signals are transcribed
into meaningful lexical units such as words, although with
recognition errors. When ASR is not performed here with
the various considerations mentioned above, it is still possible
to learn similar concepts and approaches from ASR, i.e., to
train acoustic models to describe the variations or distributions
of the acoustic characteristics for some fundamental units in
speech signals. The huge target spoken archive can serve as
the natural training data for such models, but the difference is
that there is no human annotation for the target spoken archive,
or the models have to be trained in an unsupervised way. This
is reasonable nowadays because huge quantities of spoken
archives are available everywhere, but it is very difficult to
have human annotation for them.

This leads to the second category of approaches considered
here: model-based approaches. Without human annotation, we
do not have phonetic knowledge of the audio data any more,
but we can identify similar signal patterns having similar
acoustic characteristics, referred to as “acoustic patterns”
here. Hence, the purpose is to automatically discover the set
of acoustic patterns describing the target archive, and train
acoustic models for them using the data in the target archive.
The approaches here are based on a set of such models
trained in an unsupervised way without human annotation.
For retrieval purposes, these acoustic patterns should cover
the entire target archive, and it is desired that these acoustic
patterns can be consistent to some underlying linguistic units
such as phonemes. These goals are difficult to achieve, but
important along this direction. In this subsection we will first
very briefly review some popular approaches for unsupervised
discovery of acoustic patterns from an audio data set (the target
archive), and training models for these patterns. Use of these
models in spoken content retrieval is then presented in the next
subsection.

1) Bottom-up modeling: Most approaches for modeling the
acoustic patterns follow a three-phase recursive procedure in-
cluding signal segmentation, unit clustering and model training
in each iteration [85], [202], [209], [216], [233]–[239]. In other
words, the signals in the archive are first segmented into small
units, the units are then clustered into groups based on their
acoustic characteristics, and pattern models are finally trained
for each group. This process can then be repeated iteratively.
A unified nonparametric Bayesian model was developed for
jointly modeling the above three subproblems together [217].
In this model, each pattern model is an HMM, and the
segment boundaries and the pattern each segment belongs
to are hidden variables. This model tries to find the HMM
parameters and the hidden variables best representing the audio
data collection jointly. These automatically discovered pat-

terns represent phoneme-like (or subword-like) patterns on the
highest level in most cases. The above approaches were then
extended to include higher level units during training [240],
for example, word-like patterns were discovered by identifying
the subword-like patterns frequently appearing together. In
this way, a lexicon of word-like patterns can be learned and
an n-gram language model can be trained on top of these
word-like patterns. Semantics were then more or less revealed
with these word-like patterns. Experimental results indicated
that subword-like patterns generated in this way had high
correlation with phoneme identities.

All of the above approaches generate the models bottom-
up. Although these approaches modeled the acoustic behaviour
of the target spoken archive reasonably well, in most cases
they tend to over-cluster the different realizations of the same
phonetic identity, e.g., multiple models were very often gen-
erated for the same linguistic units such as phonemes. This is
reasonable because different realizations for the same phoneme
may behave very differently acoustically when produced by
different speakers, in different contexts, or under different
acoustic conditions. Without human annotation, there is no
way to indicate they belong to the same phoneme, and as a
result the machine clusters them as different patterns.

For the task of spoken content retrieval, good acoustic
patterns need to have high coverage over almost all realizations
of the same linguistic identity such as a phoneme. This means
the ability for such patterns to model sound characteristics
under various conditions is almost indispensable. For example,
the realizations of the same vowel produced by male and
female speakers are very often split into different acoustic
patterns when discovered without human annotation. Without
knowing these different patterns refer to the same vowel,
we may be able to find only those terms spoken by female
speakers when searching with a female spoken query. This is
a very challenging problem for approaches along this direction.

2) Top-down Constraints: It has been observed that word-
level patterns are easier to identify across speakers than
phoneme-level ones [241]. The similarity between the realiza-
tions of the same phoneme but produced by different speakers
is usually relatively hard to identify, but on the word level, the
similarities are very often much more striking. For example,
we can usually observe similar formant contours, and similar
temporal alternation between voiced/unvoiced segments and
low/high frequency energy parts.

With the above observation, a new strategy that tempers
the subword-like pattern models obtained from bottom-up
training with top-down constraints from the word level was
proposed [241]. The repeated word-level patterns are first
discovered from the spoken content using techniques such as
segmental DTW mentioned in Subsection V-B. For the realiza-
tions of the same word-level pattern, DTW alignment between
them is then performed. Because they probably have the same
underlying subword unit sequences, the DTW aligned acoustic
features should therefore map to the same subword units even
though they are not acoustically similar. This approach was
tested on a task defined earlier [221] different from STD (given
a pair of audio segments, the system determined whether they
belonged to the same words), but not for STD yet. It was found
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that the top-down constraints were capable of improving the
performance by up to 57% relative over the bottom-up training
alone [241].

3) Transfer Learning: Practically, acoustic patterns do not
have to be discovered from scratch. Because all languages
are uttered by human beings with a similar vocal tract struc-
ture and thereby share some common acoustic patterns, the
knowledge obtained from one language can be transferred
onto other languages. For resource-rich languages like English,
because a huge amount of audio has been collected and
annotated, high quality acoustic models are available, and the
phonemes represented by these models are known. To transfer
the knowledge from a resource-rich language, the target audio
(probably in a different language) is decoded by the recognizer
of the resource-rich language into phonemes of the resource-
rich language, which can be directly used as acoustic patterns
in the following spoken content retrieval task, or taken as the
initial models for the bottom-up modeling approach [210].
Since the acoustic patterns for one language usually cannot
be completely covered by the phoneme set for another and
the target audio may include more than one languages, transfer
learning from several resource-rich languages, or decoding the
target audio with recognizers of several different languages,
was shown to be very helpful [210], [211], [242]–[247].

E. Model-based Approaches in Spoken Content Retrieval

With the acoustic patterns discovered and trained from the
target spoken archive, different approaches can be applied to
perform the model-based signal matching without ASR. Below
we present some good examples.

1) Model Posteriorgrams for DTW: A very popular ap-
proach is transforming the frame-based acoustic features in
both the spoken query and documents into the pattern pos-
teriorgrams, or each signal frame is represented by the pos-
terior probabilities for all acoustic patterns. The DTW-based
approaches mentioned in Subsections V-B and V-C can then
be directly applied. Experiments on the TIMIT corpus showed
that compared to the Gaussian posteriorgrams [209] and RBM
posteriorgrams [218], the pattern posteriorgrams from the
nonparametric Bayesian model mentioned in Subsection V-D
relatively improved the precision by at least 22.1% [217]. It
was also shown that the posteriorgrams for the unsupervised
acoustic patterns even outperformed the phone posteriorgrams
derived from supervised phoneme recognizers if the latter were
trained with corpora not matched to the target audio [216],
[217], [248].

2) Matching the Query Frames with the Acoustic Pattern
Models for the Archive: With a complete set of subword-like
patterns, a lexicon of word-like patterns, and a language model
for word-like patterns [240], it is possible to decode the target
spoken archive off-line into word-like patterns composed of
subword-like patterns. The decoding is in exactly the same
way as the conventional ASR, but completely unsupervised,
with output being the word-like acoustic pattern sequences.

During retrieval, given a spoken query, each frame of
acoustic features in the spoken query is matched to the pattern
model sequences of the spoken documents in the archive, or
evaluated against the HMM states in the pattern models for the

documents, very similar to the conventional ASR decoding for
which each frame of the input speech is evaluated against the
HMM states of the acoustic models [249]. When matching
the frame-based query features with the pattern models, a
duration-constrained Viterbi algorithm [249] was proposed to
avoid unrealistic speaking rate distortion through the matching
process, very similar to the slope-constrained DTW discussed
earlier in Subsection V-B, except for model-based approach
here. The spoken documents are then ranked based on the
likelihoods obtained with the Viterbi decoding.

Matching the signal frames in the spoken query with the
pattern models representing the target archive actually requires
much less computation as compared to the DTW-based ap-
proaches, which matches the signal frames in the query with
the signal frames in the target archive as mentioned in Sub-
sections V-B and V-C. This is because the numbers of signal
frames in the target archive can be huge, but the number of
acoustic patterns in the archive can be much less. Experimental
results showed a roughly 50% reduction in computation time
needed and 2.7% absolute MAP improvement as compared
to the segmental DTW approach in Subsection V-B on a
Mandarin broadcast news corpus [250].

3) Query Modeling by Pseudo Relevance Feedback: The
spoken query can also be represented by pattern models.
However, the acoustic patterns are discovered from the archive
and therefore can be slightly far from the query. One way to
take care of this problem is to train special models (and anti-
models) for the query, instead of using the pattern models
discovered from the spoken archive. This can be achieved
by the pseudo-relevance feedback (PRF) approach introduced
in Subsection IV-C [249], [251]. In this approach, a list of
hypothesized regions for the spoken query is first generated
in the first-pass retrieval, which can be achieved with any
unsupervised approach introduced in this section, either DTW-
based, or model-based. The top several hypothesized regions
on this list that are most possible to be the query are re-
garded as pseudo-positive examples, while the hypothesized
regions that have the lowest confidence scores on the list are
regarded as pseudo-negative examples. The pseudo-positive
and -negative examples are then used to train respectively a
query model and an anti-query model online for exactly the
specific query. The final confidence scores of all hypothesized
regions on the list are then the likelihood ratio evaluated with
the query model and anti-query model for the query.

With this approach, context dependencies among acoustic
events inside the queries are better characterized with the
query model, while minor signal differences that distinguish
the true hypotheses from the false alarms are emphasized
by the likelihood ratio. Experimental results showed that this
approach offered improved performance if applied on top of
either DTW-based or model-based approaches on the TIMIT
corpus, Mandarin broadcast news and MediaEval 2011 Spoken
Web Search corpus [249], [251].

4) Multi-level Pattern to Pattern Matching across varying
Model Configurations: Both the spoken queries and docu-
ments can be decoded using the acoustic patterns automatically
discovered from the archive, and represented as acoustic
pattern sequences. In this way, the matching between the
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query and the documents is reduced to comparing the acoustic
pattern indices in the pattern sequences, and the on-line
computation load can be further reduced because the efficient
indexing methods for text content like inverted indexing [252]
or WFST-based indexing [66] can be applied. In addition, it
was proposed in a recent work that the multi-level sets of
acoustic patterns based on varying HMM model granularities
(number of states per subword-like pattern model or temporal
granularity m, number of distinct subword-like patterns or
phonetic granularity n) are complementary to one another, thus
can jointly capture the various signal characteristics [253]. It
was shown that performing the matching simultaneously over
many multi-level sets of patterns is easy, and the integrated
scores can offer significantly better performance. This is
presented in more details below.

Let {pr, r = 1, 2, 3, .., n} denote the n subword-like pat-
terns in a pattern set. A similarity matrix S of size n × n is
first constructed off-line, for which the element S(i, j) is the
similarity between any two pattern HMMs pi and pj in the
set.

S(i, j) = exp(−KL(i, j)/β), (15)

where KL(i, j) is the KL-divergence between the two pattern
HMMs evaluated with the states and summed over the states.

In the on-line phase, the following procedure is performed
for the entered spoken query Q and each document D in the
archive for each pattern set. Assume for a given pattern set
a document D is decoded into a sequence of |D| patterns
with indices (d1, d2, ..., d|D|) and the query Q into a sequence
of |Q| patterns with indices (q1, ..., q|Q|). A matching matrix
W of size |D| × |Q| for every document-query pair is thus
constructed, in which each entry (i, j) is the similarity between
acoustic patterns with indices di and qj as in (16) and shown
in Fig 8 for a simple example of |Q| = 5 and |D| = 10, where
the element S(i, j) is defined in (15),

W (i, j) = S(di, qj). (16)

It is also possible to consider the N-best pattern sequences
rather than only the one-best sequence here [253].

Fig. 8: The matching matrix W in (16) for D =
(d1, d2, ..., d10) and Q = (q1, q2, ..., q5) with subsequence
matching (red) or DTW (blue and thicker).

For matching the sub-sequences of D with Q, the elements
in the matrix W in (16) are summed along the diagonal
direction, generating the accumulated similarities for all sub-
sequences starting at all pattern positions in D as shown
in Fig. 8 (red). The maximum is selected to represent the
relevance between document D and query Q on the pattern
set as in (17).

R(Q,D) = max
i

|Q|∑
j=1

W (i+ j, j). (17)

It is also possible to consider dynamic time warping (DTW) on
the matrix W as also shown in Fig. 8 (blue and thicker) [253].

The relevance scores R(Q,D) in (17) obtained with all
pattern sets based on different model granularities are then
averaged, and the average scores are used in ranking all the
documents for retrieval. The experiments performed on the
TIMIT corpus showed that by integrating the scores obtained
with 20 sets of subword-like patterns (n = 50, 100, 200, 300
distinct subword-like patterns, m = 3, 5, 7, 9, 11 states per
pattern HMM), this approach significantly outperformed the
DTW-based approach in Subsection V-B by 16.16% in terms
of MAP at reduced online computation requirements [253].

VI. SEMANTIC RETRIEVAL OF SPOKEN CONTENT

In this section, we present the next major direction: semantic
retrieval of spoken content.

A. Motivation and Background

Most techniques presented above are primarily for STD.
Here we shift the focus to semantic retrieval of spoken
content. Semantic retrieval has long been highly desired, for
which all objects relevant to the query should be retrieved,
regardless of including the query terms or not. For example,
for a query of “White House”, all utterances regarding to
the president of United States should be retrieved, although
many of them do not include the query “White House”. This
problem has been widely studied in text information retrieval
with many very useful approaches available. Taking the one-
best transcriptions from the ASR module as the text, all
those technique developed for text information retrieval can
be directly applied to semantic retrieval of spoken content,
but the ASR errors may seriously degrade the performance.
Therefore, special techniques for semantic retrieval of spoken
content are necessary. Most of these techniques borrowed
some concepts from text information retrieval, but considering
the special problems with spoken content. Below, we first
very briefly introduce the basic concepts of some techniques
for text information retrieval which are useful for spoken
content, although much complete information should be found
elsewhere [252], [254]. The way to adopt techniques for text
retrieval under the framework of cascading speech recognition
with text retrieval will then be described. The techniques
beyond the cascading framework then follow.

B. Basic Concepts in Text Information Retrieval useful for
Semantic Retrieval of Spoken Content

The basic vector space model and language modeling re-
trieval approach described below provide very good frame-
works on top of which query/document expansion techniques
can be applied. These techniques were designed for text
retrieval, but equally applied for spoken content.
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1) Vector Space Model [255]: In this model, documents D
and queries Q are respectively represented as vectors ~D and
~Q. When the user enters a query Q, the documents D are
ranked according to the relevance scores R(Q,D), which is
the cosine similarity between ~D and ~Q. Each component of ~D
and ~Q corresponds to a term t. Typically in text information
retrieval, the terms t can be single words, keywords or longer
phrases, while for spoken content , subword units or subword
unit n-grams are widely considered in addition in order to
alleviate the OOV problem. Very often the information based
on words and subword units are complementary. The values
of the components in the vectors ~D and ~Q corresponding to a
term t is represented as w(t,D) and w(t, Q) below. Although
there exist different ways to define w(t,D) and w(t, Q), TF-
IDF weighting or its variants is the most popularly used. In
this weighting scheme, w(t,D) is defined as (18) and (19)..

w(t,D) = N(t,D)× IDF (t), (18)

IDF (t) = log(TD/df(t)), (19)

where N(t,D) is the total occurrence count for the term t in
the document D, or term frequency (TF), and IDF (t) is the
inverse document frequency (IDF). TD is the total number of
documents D in the target database, and df(t) is the number
of documents containing the term t in the target database.
IDF (t) emphasizes those terms t appearing in only very few
documents, because they are usually more informative. The
definition of w(t, Q) is parallel to w(t,D), except that D in
(18) should be replaced by Q.

A major issue in semantic retrieval is that many documents
relevant to the query do not necessarily contain the query
terms. The IDF here is helpful in this issue. For example,
consider the user enters a query “Information Retrieval”,
which includes two terms, “Information” and “Retrieval”.
Some relevant documents may only contain the term “Re-
trieval” but not the whole query of “Information Retrieval”.
However, if the IDF of the term “Retrieval” is high because
it appears only in very limited number of documents, those
documents containing only the term “Retrieval” may still
have high relevance scores without “Information”. On the
other hand, the IDF of the term “Information” may be much
lower because this term appears in many other documents,
so those documents including the term “Information” but not
the term “Retrieval” have much lower relevance scores. In
this way, some documents having only parts of the query but
semantically related to the query may also be retrieved.

2) Language Modeling Retrieval Approach [256], [257]:
The basic idea for this approach is that the query Q and
document D are respectively represented as unigram language
models ΘQ and ΘD, or term distributions P (t|ΘQ) and
P (t|ΘD), where t is a term11. The relevance score R(Q,D)
used to rank the documents D with respect to the given query
Q is then the inverse of the KL-divergence between ΘQ and
ΘD:

R(Q,D) = −KL(ΘQ||ΘD). (20)

11There are works to extend the language model from unigrams to also
including n-grams and grammars, but out of the scope here [256].

That is, documents whose unigram language models are sim-
ilar to the query’s unigram language model are more likely
to be relevant. A document’s unigram language model ΘD is
estimated based on the terms in document D as in (21) below.

P (t|ΘD) = N(t,D)/
∑
t

N(t,D), (21)

where N(t,D) is as in (18), and ΘD is usually further
interpolated with a background model for smoothing before
being used in (20). It has been shown that such smoothing
strategies implicitly give higher weights to those rare but infor-
mative terms very similar to the inverse document frequency in
(19) [258], which is helpful for semantic retrieval. ΘQ for the
query Q is parallel to (21), except that D in (21) is replaced
with Q.

3) Query/Document Expansion: Query and document ex-
pansion are usually applied to address the problem that all
terms in the query are not in the relevant documents, for
example, the query is “airplane”, whereas there is only “air-
craft” in the relevant documents. For document expansion,
with latent topic analysis approaches [259]–[262] such as
probabilistic latent semantic analysis (PLSA) [260] and latent
Dirichlet allocation (LDA) [261], each document vector or
document language model can be expanded by assigning
non-zero weights in (18) or non-zero probabilities in (21)
to those terms not appearing in the document but found
semantically related to its content [263]–[266], e.g. adding the
term “airplane” to those documents have “aircraft” only, based
on the information that the terms “airplane” and “aircraft” may
appear in very similar topics. Query expansion can be achieved
in similar ways by latent topic analysis, but it was found
empirically not as effective as document expansion [267],
probably because the queries are usually too short to reliably
estimate its latent topics. More effective query expansion is
very often realized with pseudo-relevance feedback (PRF)
mentioned in Subsection IV-C, i.e., those words appear re-
peatedly in the documents retrieved in the first pass with the
highest scores, but much less frequently in other documents
in the target database, can be properly considered and added
to the query [167], [169], [268]–[272]. The above document
and query expansion techniques developed for text information
retrieval can be directly applied on the transcriptions of the
spoken content as well [263], [273], [274]. For spoken content
retrieval, external information from the web was also shown
to be helpful for the expansion of both documents and queries
to mitigate the effects of unavoidable ASR errors [275]–[278].

The vector space model and language modeling retrieval
approach provide very good frameworks on top of which query
and document expansion techniques can be applied in addition.
For vector space model, query expansion can be achieved by
adding to the original query vector ~Q with the average of
the document vectors for the pseudo-relevant documents, and
subtracting the average of the vectors for all documents in
the database excluding the pseudo-relevant ones [272], so as
to add to the query the words appearing repeatedly in the
pseudo-relevant documents, but remove from the query those
frequently appearing in other documents. For the language
modeling retrieval approach, the query expansion can be
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formulated by component mixture models [270]. The language
models for the pseudo-relevant documents are assumed to be
the interpolation of a language model primarily for the query-
related terms and a background model for general terms, with
document-dependent interpolation weights between the two
(e.g. if an irrelevant document is taken as pseudo-relevant,
this document’s weight for the model for query-related terms
should be very low). These document-dependent weights and
the two component mixture models are unknown, but can be
estimated from the term distributions in the pseudo-relevant
documents. Given the estimation, the language model for
query-related terms serves as the new query model and is used
to replace ΘQ in (20). In addition, regularizing the estimation
process by the original query language model was shown to
yield better retrieval performance, and this approach is known
as the query-regularized mixture model [167], [259], [260],
[263], [265], [266].

C. Estimating TF/IDF Parameters over Lattices

Because the techniques mentioned in Subsection VI-B
above were developed for text without errors, the ASR errors
may seriously degrade the performance. If the term frequencies
N(t,D) in (18) and (21) or inverse document frequencies
IDF (t) in (19) are directly counted from the one-best tran-
scriptions, they can be very different from the true values in
the spoken content. Therefore, better estimation of these pa-
rameters from lattices is crucial. Because the query/document
expansion techniques work on top of the vector space model
or the language modeling retrieval approach, better TF/IDF
parameters are expected to offer better performance.

The expected term frequencies E(t,D) estimated from the
lattices are widely used to replace the original term frequencies
N(t,D) when applying the vector space model in (18) and
language modeling approach in (21) [71], [279], [280].

E(t,D) =
∑

s∈L(D)

N(t, s)P (s|D), (22)

which is parallel to (6), except that the query Q and the
utterance u in (6) are respectively replaced by the term t and
the spoken document D. By replacing N(t,D) with E(t,D),
the vector space model and the language modeling retrieval
approach can be very well enhanced [279], [281].

Inverse document frequency for a term t, IDF (t) in (19),
is another important parameter for not only the vector space
model here, but also many other applications such as summa-
rization and key term extraction. According to (19), inverse
document frequency is defined based on df(t), the number
of documents in the target database that mention the term t.
However, there actually does not exist a well-known good way
to estimate this number df(t) from lattices [279]12.

One way to compute df(t) in (19) is to define it to be∑
D E(t,D) using (22) [82]. However, IDF (t) obtained in

this way is certainly quite different from the original idea
of inverse document frequency. Another way to obtain df(t)
is to take those documents D with expected frequencies of
t, E(t,D) in (22), exceeding a threshold as containing t,

12Obviously, it is not a good idea to consider a spoken document with the
term t in the lattices as truly containing the term t.

but there seems to be no good principle in selecting this
threshold [71]. There was still another relatively sophisticated
approach, in which df(t) is modeled as a linear combination of
more than a hundred cues with weights learned from training
data [282]. This approach was compared with df(t) estimated
on one-best transcriptions or obtained from E(t,D) with a
heuristically set threshold, and was shown to yield better
retrieval performance based on vector space model [282].

D. Better Estimation of Term Frequencies beyond Directly
Averaging over the Lattices

E(t,D) estimated in (22) inevitably suffers from the recog-
nition errors with performance depending on the quality of
the lattices. Therefore, some techniques for better calibrating
E(t,D) beyond directly averaging over the lattices have been
proposed and were shown to offer better results.

For one example, the values of E(t,D) can be modeled
as the weighted sum of the scores based on a set of cues
obtained from the lattices. With the weights for the cues
learned from the training data, better E(t,D) closer to the true
frequency count than (22) was shown to be obtainable [283].
Another example is based on the context consistency of the
term considered. Because the same term usually have similar
context, while quite different context usually implies the terms
are different [152]. Therefore, whether a term t exists in a
spoken document D can be judged by not only the scores of
the arcs hypothesized to be t, but also the word hypotheses of
the arcs surrounding the term t in the lattices of D. With some
documents containing and not containing the term t as positive
and negative examples, a support vector machine (SVM) can
be learned to discriminate whether a spoken document truly
contains the term t based on the context of t. Then E(t,D) can
be better calibrated by decreasing the value if the document
D is regarded as not containing t by the SVM and vice versa.
Although this approach needs the training data for all the terms
t to train an SVM for every term t considered, the training
data needed can actually be obtained by pseudo-relevance
feedback (PRF) [284] mentioned in Subsection IV-C in prac-
tice. E(t,D) calibrated in this way was shown to be able to
enhance the document representation in the language modeling
retrieval approach, based on which better performance with
query expansion was obtained [284].

It is also possible to incorporate some information lost
during ASR to better estimate E(t,D) than that in (22)
using approaches found useful in Section IV, for example,
the graph-based approach solved with random walk as in
Subsection IV-E [281], [285]. In this approach, all the arc
sequences a whose hypotheses are a specific term t in the
lattices obtained from all spoken documents in the whole target
archive are clustered into groups based on their time spans,
such that those with time spans highly overlapped are in the
same group. Each group is represented as a node in a graph
for the term t as in Fig. 6, and the edge weights between two
nodes are based on the acoustic similarities evaluated with
DTW distances between all pairs of acoustic vector sequences
corresponding to two arc sequences respectively belonging to
the two groups. The initial score of each node is the summation
of the posterior probabilities of all its elements. The random
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walk algorithm is then performed, and the scores propagated.
The new scores for all the groups in the spoken document
D are summed over to form a new estimation of the term
frequency Eg(t,D) to replace E(t,D) in (22). The above
graph construction and random walk are repeated for all t
(such as all the words in the lexicon). Different from E(t,D)
in (22) which only considers the information from a single
lattice, here the acoustic similarity among all arc sequences a
whose hypotheses are the considered term t in the lattices of
all documents in the entire archive is considered. Experiments
performed on Mandarin broadcast news showed that better
retrieval performance using document expansion with latent
topic analysis and using query expansion with the query-
regularized mixture model was achieved [281], no matter the
terms t are words, subword units, or segments of several
consecutive words or subword units [281].

E. Query Expansion with Acoustic Patterns

Fig. 9: The framework of query expansion utilizing automat-
ically discovered acoustic patterns.

For spoken content retrieval, even if the pseudo-relevant
spoken documents actually contain some terms suitable for
query expansion13, these terms may be OOV or incorrectly
recognized, never included in the transcriptions or lattices,
and therefore cannot help in query expansion. Subword-based
query expansion, in which suitable subword sequences are
found in the subword-based lattices for query expansion,
can address this problem to some extent [274], [287]–[290].
However,the subword-based lattices may have too many in-
correct hypotheses, so the subword sequences corresponding
to suitable terms for query expansion may not be easy to find.

A new framework of query expansion for semantic retrieval
of spoken content was proposed as shown in Fig. 9, in which
a set of acoustic patterns automatically learned from the
target spoken archive in an unsupervised way as discussed
in Subsection V-D is utilized, with a goal to take care of

13There were also interesting works for “query expansion” for STD,
however not for semantic retrieval purpose [286], but to expand the query
with the terms phonetically similar to the query. Here we refer to expanding
the queries with semantically related but phonetically different terms.

the problem mentioned above [291]. In this work, there are
two levels of acoustic patterns used, the word-like patterns,
subword-like patterns, plus the lexicon and the language model
for the word-like patterns as mentioned in Subsection V-D, all
learned from the target spoken archive [240] (lower middle of
Fig. 9). As shown of the lower half of Fig. 9, each spoken
document is represented in two different forms: lattices in
text form (hypothesis of each arc is a word or a subword
unit) generated by the conventional ASR module (bottom right
corner of Fig. 9), and the one-best acoustic pattern sequences
for each spoken document generated by a decoder very similar
to ASR module, except based on a set of acoustic/language
models and a lexicon for the automatically discovered acoustic
patterns [292] (bottom left corner).

When a text query is entered, the conventional retrieval
engine (upper right of Fig. 9) matches the query terms with
the lattices for spoken documents (in text form) to generate
the first-pass retrieval results14. The top-ranked documents
are selected as pseudo-relevant documents. The system then
extracts the text terms possibly related to the query from these
pseudo-relevant documents to generate the expanded query in
text form (upper middle of Fig. 9), which gives a new set of
retrieval results via the retrieval engine in text (upper left).

In addition, we have the second version of the expanded
query based on acoustic patterns. The acoustic patterns (word-
level or subword-level) repeatedly occurring in the pseudo-
relevant documents, probably corresponding to some query-
related terms but being OOV or incorrectly recognized there-
fore not present in the lattices obtained with ASR, are also
used to form the second expanded query composed of acoustic
patterns. Then the expanded query in acoustic patterns is
used to retrieve the spoken documents expressed in one-
best acoustic pattern sequences. In this way, the acoustic
patterns corresponding to some important query-related terms
which are OOV or incorrectly recognized by the conventional
ASR can be included in the expanded query, and the spoken
documents containing these acoustic patterns can thus be
retrieved. The results for the two expanded queries are finally
integrated (upper left of Fig. 9) and shown to the user.
Preliminary experiments on broadcast news showed that the
extra query expansion based on acoustic patterns could offer
extra improvements than the conventional query expansion
based on only the lattices in text form [291].

F. Semantic Retrieval without ASR

Almost all approaches mentioned in Section V achieved
without ASR focused on the task of STD by matching
the signals directly on the acoustic level without knowing
which words are spoken. It seems all they can do is STD.
Intuitively semantic retrieval is difficult to achieve without
knowing the words, because the semantics or semantic re-
lationships between utterances are carried by or based on
words. In experiments on Mandarin Broadcast News [293],
the DTW-based query-by-example approach mentioned in

14 Because the acoustic patterns are discovered in an unsupervised way,
the system never knows which text term or which phoneme an acoustic pattern
corresponds to. But the query is in text, so the acoustic patterns cannot be
used in the first-pass retrieval.
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Subsection V-B yielded an MAP score of 28.3% for STD
or to return all utterances containing the query terms; but
reduced to 8.8% only on the same spoken archive with the
same query set using same DTW-based approach when the
goal was switched to semantic retrieval, or to return all spoken
documents semantically related to the query. This is clearly
because many of the spoken documents semantically related
to the query didn’t contain the query terms, so the DTW-based
approaches simply had no way to retrieve these documents.
However, some recent work actually managed to achieve the
goal of semantic retrieval without ASR to some initial extent
as summarized below.

1) Query Expansion without Knowing the Words: When
the voice of “United States” is in the original spoken query,
we can expand this query with the audio of “America”.
Then the spoken documents including “America” but not the
original query “United States” can also be retrieved. This
can be achieved with an ASR module, but becomes difficult
without ASR, because the system doesn’t know which signal
segment corresponds to the words “United States” or “Amer-
ica”. Fortunately, the phenomenon that semantically related
terms frequently co-occur in the same spoken documents
remains true for automatically discovered acoustic patterns
with unknown semantics.

We can first use the conventional query-by-example ap-
proach (e.g. DTW-based) to locate the documents containing
the original spoken query, and then find those acoustic patterns
frequently co-occurring with the query in the same documents.
Although which words these acoustic patterns correspond to
are not known at all, they may correspond to terms seman-
tically related to the original query, so can be added to the
original query for expansion. However, the acoustic patterns
corresponding to function words usually appear frequently
in most spoken documents including those retrieved in the
first pass, therefore may also be added to the query and
cause interferences. This is why query-regularized mixture
model [167] was used to filter out such acoustic patterns for
function words [293]. In addition, those spoken documents
retrieved by shorter acoustic patterns in the spoken queries
should be assigned lower relevance scores [294] because very
short acoustic patterns may correspond to subwords rather
than real terms. With these approaches, the MAP scores
of semantic retrieval without ASR for the experiments on
Mandarin broadcast news were improved from 8.8% (DTW-
based only) to 9.7% (with query expansion) [293], which was
still low, but the improvement was not trivial. This showed that
semantic retrieval without ASR is achievable to some extent,
although remains to be a very challenging task.

2) Topic Modeling: Topic models learned from the target
archive can be helpful for semantic retrieval. The mainstream
topic modeling approaches developed for text such as PLSA
and LDA can be directly applied on the spoken content
when transcribed into text by ASR. This works even with
a recognizer for a language different from the target audio.
For example, one can transcribe the English audio with a
Hungarian phone recognizer, and take the Hungarian phone
n-grams as words for topic modeling [295].

Topic modeling can be performed on spoken content even

without ASR by taking the automatically discovered acoustic
patterns as words. With the topic models, for example, spoken
documents can be expanded by acoustic patterns semantically
related to its topics but originally not in the documents. The
word-level acoustic patterns can also be discovered jointly with
the latent topic models [296]. In this approach, segmental
DTW mentioned in Subsection V-B was employed first to
discover a set of audio intervals, and similar audio intervals
very probably sharing the same underlying text transcription
were linked together [234]. In this way, the audio intervals and
their links actually described the characteristics of the spoken
documents without knowing exactly which audio intervals may
be instances of which spoken words or phrases. As a result,
based on the characteristics of the documents, the acoustic
patterns, the probabilities of observing the acoustic patterns
given the latent topics, and the latent topic distribution for
the spoken documents were jointly learned from the spoken
archive. This approach has not yet been applied on semantic
retrieval without ASR at the time of writing this article,
but the experiments conducted on a set of telephone calls
from the Fisher Corpus have demonstrated that the framework
successfully provided a means of summarizing the topical
structure of an spoken archive by extracting a small set of
audio intervals which are actually instances of representative
words or phrases for the discovered latent topics [296].

VII. INTERACTIVE RETRIEVAL AND EFFICIENT
PRESENTATION OF RETRIEVED OBJECTS

In this section, we present the next major direction: inter-
active retrieval and efficient presentation of retrieved objects.

A. Motivation and Background

Most retrieval processes are completed interactively, even
for text retrieval. The system returns list of items found, the
user selects some of them, and the system further returns more
information and so on. This is because the users usually tend
to enter short queries not specific enough to describe what
they actually intend to find, so very often a few iterations are
needed to locate them. For text information, it is easy to extract
some snippets for the items found and list them on the screen,
and it is easy for the users to find out the desired items at
a glance and click on them. Therefore, interactive retrieval is
straightforward.

For the spoken content, however, it is not easy to display
the retrieved items on the screen, and it is not easy for the
user to browse across them, simply because the items are
audio (or plus video) signals which can only be played back
sequentially, and it is not easy to verify if they include the
desired information without completely going through them.
The high uncertainty of ASR make the retrieval much less
reliable and the interactive process highly desired, but the
difficulties in showing the retrieved objects on the screen and
having them browsed by the user may make the interactive
process very troublesome and discouraging. For example,
the subword-based approaches may lead to relatively low
precision for the retrieved items, and the user may find it very
boring to spend the time to go through the retrieved objects
because many of them are irrelevant. Therefore, interactive



21

retrieval in a way presenting the retrieved items on screen in a
comprehensible interface to enable the user to easily navigate
across them is crucial. As discussed below, to automatically
extract key terms, summaries and generate titles for spoken
documents, to automatically construct semantic structures for
the spoken content or the retrieved objects, and to offer
interactive retrieval in the form of spoken or multi-modal
dialogues are possible solutions to these problems.

There have been extensive research aiming for efficient
presentation and easy access of spoken (or multimedia) content
developed in the past decades or so, some of which were under
the scenario of spoken content retrieval, but not all. A few
examples are below. The NewsTuner system [297] analyzed
the latent semantics of the news and talk radio programs
and suggested programs to the user. The Broadcast News
Navigator of MITRE [298] answered questions for the news
and offered summaries for the news. The National Taiwan
University (NTU) Broadcast News Navigator [299] was able to
automatically generate titles and summaries for news stories,
and organize the news stories in hierarchical structures labelled
by automatically extracted key terms under the scenario of
interactive spoken content retrieval [300]. The MIT Lecture
Browser [19] automatically segmented, transcribed and in-
dexed course lectures and offered efficient ways to retrieve
the audio and video segments of the lectures. The FAU Video
Lecture Browser displayed automatically extracted key terms
for access of video lectures [301].

National Taiwan University (NTU) Virtual Instructor15, a
course lecture system developed at NTU [20], [302], is a
good example for the concepts discussed here. Fig. 10 are the
example screenshots for the learner/system interactions with
the NTU Virtual Instructor for a course on Speech Processing
offered at NTU and supported by the system. In Fig. 10 (a), a
learner entered the query “triphone” in the blank at the upper
right corner, and the retrieval system found a total of 163
utterances in the course containing the query term “triphone”.
The learner can click the buttons “Play” and listen to the
lectures starting with these utterances, or click the links for the
slides for lectures including these utterances, for example the
slide for the first item with title “5-7 Classification and ......” (in
the green frame), to jump to the complete information for the
slides. The automatically extracted key terms for the slides are
also listed (in the blue frame for the first item) to help the user
understand what each slide is all about. If the learner clicked
the link for the slide, he saw the screenshot in Fig. 10 (b),
where he not only had the slide as on the right, but found
that the lecture for this slide was 10 minutes and 23 seconds
long (in the green frame), and he could click the bottom “Play
Summary” (with the red edges) to listen to a summary of only
1 minute and 2 seconds long. In addition, the learner saw the
relationships between all key terms used in this slide and other
key terms used in this course automatically extracted from
the lectures (referred to as the key term graph here). The key
terms of this slide were in a yellow bar (e.g. “classification and
regression trees” on the left of the yellow bar), while those key
terms below the yellow bar (e.g. “entropy”) were the other key

15http://sppc1.ee.ntu.edu.tw/∼loach/lecture 2/

terms used in this course related to the one in the yellow bar.
If the learner clicked the key term “entropy”, as in Fig. 10 (c),
the system then showed all slides in the course including this
key term and where the key term appeared the first time as an
example learning path recommended. Therefore, the learner
can choose to learn more about “entropy” sequentially from
the beginning or towards more advanced topics if needed.

B. Summarization, Title Generation and Key Term Extraction
for Spoken Documents

Displaying the automatically extracted summaries, titles or
key terms can be a good approach to facilitate the browsing
of the spoken content, specially across the retrieved objects as
summarized below.

1) Summarization: Spoken document summarization [303]
has been extensively investigated since 1990s for various
purposes not limited to retrieval. Spoken documents in varying
genre and domain were considered, including news [299],
[304]–[307], meeting records [308]–[311], lectures [302],
[312]–[314] and conversational speech [315]. Extractive sum-
marization is usually considered, for which the summary is
a set of utterances, phrases or speaker turns automatically
selected from a spoken document. The techniques of ex-
tractive spoken document summarization spans widely, and
only a few examples are mentioned here. A popularly used
unsupervised approach is the Maximum Marginal Relevance
(MMR) method [316]. It uses a greedy approach for utterance
selection and considers the trade-off between the importance
of the utterances and the redundancy among the selected
utterances. Various approaches were used to estimate the
importance of utterances, for example, topic analysis such
as PLSA [317], [318]. Another well-known unsupervised
approach is the graph-based approach [192], [319], which
analyzes the overall relationship among the utterances of a
spoken document with a graph using approaches very similar
to those explained in Subsection IV-E. With the availability of
a set of training documents and their reference summaries,
supervised learning can be used. In such cases, the task
of extractive summarization was very often considered as a
binary classification problem determining whether to include
an utterance in the summary [309], [320]. More sophisticated
approaches were proposed recently which enable the models to
learn to select directly the best utterance subset from a spoken
document to be the summary by considering the document
as a whole [310], [321]–[324]. In these latter approaches,
the different goals such as including important utterances and
minimizing redundancy can be jointly learned [321].

Spoken content retrieval and spoken document summariza-
tion share some common ground, since both of them need to
identify the important components or parts (e.g. keywords) in
spoken content. In the mainstream spoken document summa-
rization techniques, the spoken documents are first transcribed
into text by ASR, and approaches like MMR and graph-based
methods are applied on the ASR outputs. Considering the
ASR errors, multiple recognition hypotheses were used [325],
and utterances with lower probabilities of being erroneous
are selected (e.g. considering confidence scores) [326]. All
these can be regarded as the “cascading framework” of spoken

http://sppc1.ee.ntu.edu.tw/~loach/lecture_2/
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Fig. 10: Example screenshots of NTU Virtual Instructor: (a) spoken content retrieval with input query “triphone”, (b) slide,
summary and keyterms for the slide with title “5-7 Classification and Regression Tree (CART)” linked from the first item in
(a), (c) example learning path for the key term “Entropy” recommended by the system.

document summarization, kind of in parallel to the “cascading
framework” of spoken content retrieval. Approaches beyond
the “cascading framework” were also proposed. For example,
just as ASR can be optimized for spoken content retrieval
in Section III, ASR can also be optimized for summarization
by considering the word significance in minimum Bayes-risk
decoding [327]. In addition, the prosodic features can help not
only retrieval as in Section IV-B, but summarization too [321],
[328]–[330], since prosodic features help to identify the im-
portant part in speech. As spoken content can be retrieved by
transfer learning from a different language or even without
ASR in Section V, summarizing English spoken documents
using a Czech phone recognizer is achievable [331], and by
taking the automatically discovered acoustic patterns as words,
MMR can also generate good summaries without ASR [332].

2) Title Generation: One example approach is to learn a
term selection model, a term ordering model and a title length
model from the training corpus including text documents and
their human generated titles. The term selection model tells if
a term in a document should be selected and used in the title.
This includes to select both key terms and the so-called “title
terms” (those are not key terms but usually appear in titles).
The term ordering model includes strong language models to

make sure the order of the selected terms is good and the title
is readable. The title length model offers proper length for
the title. A Viterbi algorithm is then performed based on the
scores from these models over the words used in the summary
to generate the title [299], [333].

3) Key Term Extraction: TF-IDF in (18) has been well
known to be a good measure for identifying key terms [334],
[335], but other measures and approaches beyond the TF-
IDF parameters have also been investigated and shown to
offer better key terms [336]–[341]. For example, the feature
parameters from latent topic models such as PLSA (key
terms are usually focused on small number of topics) [339],
[341], information from external knowledge resources like
Wikipedia [341], and prosodic features extracted from audio
signals (key terms are usually produced with slightly lower
speed, higher energy and wider pitch range) [340], [341] were
found to be useful, and machine learning models were able
to provide better solution if some training data with reference
key terms were available [336], [340].

C. Semantic Structuring for Spoken Content

This includes global semantic structuring and query-based
local semantic structuring as explained below.
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Fig. 11: Hierarchical two-dimensional tree structure for global
semantic structuring of the spoken content.

1) Global Semantic Structuring: This refers to the task
of globally analyzing the semantic structure of the target
spoken archive and building the relationships among the
individual spoken documents or other kinds of entities such
as key terms or named entities. The visualization of the
relationships or the structure allows the user to have a con-
venient and efficient interface to navigate across the target
spoken archive. Global semantic structuring has been widely
studied for text retrieval and document archives, with Web-
SOM [342] and ProbMap [343] as good examples, in which
the relationships among document clusters are visualized as
a two-dimensional map. Another good example is the Google
Knowledge Graph [344], which properly connects the entities
about people, places and things.

For spoken content, the BBN’s Rough’n’Ready sys-
tem [345] and the Informedia System at Carnegie Mellon
University [346] were earlier good examples analyzing the
spoken documents in the archive into topics and showing
to the user. In the NTU Broadcast News Navigator [347],
the spoken documents in the target archive were organized
in a hierarchical two-dimensional tree structure for efficient
browsing with an example screenshot shown in Fig. 11, in
which the clusters of news stories were shown as square blocks
on the map and the distances between the blocks reveal the
semantic closeness between the clusters. A small set of key
terms automatically selected from the news stories in a cluster
shown on the block served as the label for that cluster, allowing
the user to extract the topics under each cluster. All the clusters
in Fig. 11 further belonged to a larger cluster (the block in
red) representing a more general concept in another map on
the upper layer as shown at the lower left corner of Fig. 11.

In the NTU Virtual Instructor as mentioned above and
shown in Fig. 10, a key term graph was constructed from
the entire course as a different approach for global semantic
structuring [302]. All the key terms automatically extracted
from the course were the nodes on the graph, with relation-
ships among the key terms evaluated in different ways based
on different features [302]. Only those key terms with high
enough relationships in between were connected by edges and
shown in the block at the lower left corner of Fig. 10 (b).
Each key term was further linked to the lectures for all slides
in which the key term was mentioned. Therefore, the lectures
for all slides for the entire course were inter-connected through

the key terms and the key term graph. In this way, the learner
can easily find out related parts of the course and define his
own learning path.

2) Query-based Local Semantic Structuring: There were
extensive work on local semantic structuring for both
text [348] and spoken content [349], [350]. The retrieved
objects for such given query are clustered on-line with al-
gorithms such as the Hierarchical Agglomerative Clustering
(HAC) to construct a topic hierarchy [349], [350]. Each cluster
of semantically similar objects is a node on the hierarchy, and
one or few key terms are selected from the cluster to be used
as the label for the node. In this way, the user can easily select
or delete a node when browsing over the hierarchy.

D. Interaction with Spoken or Multi-modal Dialogues

Fig. 12: An example scenario of interactive spoken content
retrieval between the system (S) and the user (U).

Interactive information retrieval (IIR) has been used for
about two decades to make the retrieval process more ef-
fective [351]. The Dialogue Navigator for Kyoto City [352]
is a very good example, which helps users navigate across
Wikipedia documents about Kyoto as well as the tourist
information from the Kyoto city government.

Fig. 12 is a possible interaction scenario for retrieving
broadcast news stories [353]. Suppose a user is looking for
the news about the meeting of US President Barack Obama
with the leader of China. He may simply enter the short query
of “US President” (U1), which is ambiguous since there are
many news stories on completely different topics in the archive
related to “US President”. The system finds the retrieved
objects have topics diverging widely, thus asks the user for
further information (S1), and receives the next instruction,
“Diplomatic issue”(U2). With this second instruction, the
system finds many news items retrieved with the query “US
President” plus “Diplomatic issue” have a common key term of
Persian Gulf, so the system further clarifies with the user if he
wishes to find news related to “Persian Gulf ”(S2) and gets the
answer “No” (U3). This answer significantly narrows down the
target, and therefore the system offers a list of example items
for the user to select, very probably each of which represents
a somewhat different topic (S3). With the selection of the
example spoken document (U4), the system then has enough
information to retrieve the documents the user is looking for,
so the final retrieval results are presented to the user (S4).

The above interactive process is actually a multi-modal
dialogue (spoken dialogue plus other means of interaction).
Such dialogue processes have been well studied for other tasks
such as air ticket booking, city guides, and so on [352], [354],
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[355], so extending experiences in those tasks to interactive
retrieval is natural, for example, considering a statistical model
such as a Markov Decision Process (MDP) [356]. In MDP,
the actions taken by the system is chosen based on the states,
which can be one or more continuous or quantized values (
here the estimated quality of the present retrieved results based
on all the input entered so far by the user (U1,U2,U3,U4)).
The system can take different types of actions (e.g. asking
for more information (S1), requesting for confirmation with a
key term (S2), returning a list of examples for selection (S3),
etc.) on different states to clarify the user’s intention based
on an intrinsic policy. This policy can be optimized based
on a pre-defined reward function with reinforcement learning
(e.g. the fitted value iteration (FVI) [357] algorithm) using
a corpus of historical data of user interactions, or simulated
users generated based on some of such data [358]. The state
can be estimated based on the values of some performance
measures of the retrieval results such as MAP mentioned in
Subsection II-C2 [353], [359], while the key terms can be
obtained as mentioned in Subsection VII-B3. As a result, the
system is able to choose the proper actions to interact with the
user at each stage of the retrieval process such that the retrieval
performance can be maximized while the extra burden for the
user can be minimized.

VIII. CONCLUDING REMARKS AND PROSPECT

Many advanced application tasks of spoken language pro-
cessing were solved by cascading a set of modules in early
stages of developments. Take the spoken dialogue system as an
example, which was actually built in early years by cascading
ASR, natural language understanding, dialogue management,
natural language generation and TTS [360]. Today the spoken
dialogue is already a full-fledged independent area far beyond
the above cascading framework. Good examples include the
dialogue managers based on Partially Observable Markov
Decision Process (POMDP) taking the uncertainty of ASR and
spoken language understanding into considerations [361], and
learning the policy of dialogue manager and natural language
generator jointly [362]. These novel techniques beyond the
cascading framework have turned the pages of the research and
development of spoken dialogues. Another example is speech
translation, in which jointly optimizing the ASR module and
its downstream text processing module is also considered as
a major trend [105]. We believe similar developments may be
experienced in spoken content retrieval in the future.

Cascading ASR with text retrieval has been very successful
in this area, but inevitably becomes less adequate for more
challenging real-world tasks. This is why the concepts beyond
the cascading framework become important, which is catego-
rized into five major directions as in Sections III, IV, V, VI
and VII. Below we make brief concluding remarks for each
of them.

(1) Modified Speech Recognition for Retrieval Purposes
(Section III): Here the ASR and text retrieval are still cascaded,
but ASR is properly modified or learned for retrieval purposes.
Quite several approaches here are based on a known query set,
therefore limited to the scenario of keyword spotting currently.
Hence, one next step is to try to generalize these approaches

to unknown queries during training. Relevance feedback in
Subsection III-B3 is a good way to collect training data,
not only for learning retrieval-oriented acoustic models as
mentioned here, but for learning retrieval-oriented language
models and ASR output transformation, and it is also possible
to replace relevance feedback with PRF in Subsection IV-C. In
the long run, a more compact integration of ASR and retrieval
may be possible, and an initial version of it may be similar to
the one described in Subsection III-F.

(2) Exploiting Information Not Present in Standard ASR
Transcriptions (Section IV): The information in speech sig-
nals but not present in ASR outputs can be better utilized.
Quite several approaches here used query-specific rescoring
based on the similarity between the signal segments in the
target archive hypothesized as the query. The similarity was
usually computed by DTW, but because DTW is limited in
considering signal distributions, replacing DTW by model-
based approaches in Subsections V-D and V-E could be
better. Because rescoring is based on the first-pass results, the
performance is limited by the recall of the first pass. Improving
the recall by fuzzy matching or subword-based retrieval can
make rescoring more powerful [178], [363]. Of course, it
would be very attractive if we could use the information in
the speech signals directly without relying on the first pass,
but no work in this way has been reported yet.

(3) Directly Matching on Acoustic Level without ASR
(Section V): For spoken queries, the signals can be directly
matched on the acoustic level rather than the phoneme or
word levels, so all problems with ASR can be bypassed.
This matching can be based on DTW, but the model-based
approaches based on the acoustic patterns discovered from the
target spoken archive may be better in coping with the signal
variations. The achieved performance along this direction is
still not comparable with those with ASR. However, with the
Big Data generated every day and improved pattern discovery
techniques, the performance gap may be narrowed, although
there is still a very long way to go.

(4) Semantic Retrieval of Spoken Content (Section VI):
Retrieving semantically related spoken content not necessarily
including the query is still a very ambitious goal. It didn’t at-
tract as much attention as STD maybe because the entry barrier
is higher, including the difficulty of annotating semantically
related query-document data sets for the experiments, and the
annotation may even be subjective. With some benchmark data
sets becoming available in recent years, such as the semantic
retrieval task of NTCIR16 SDR [53] and Question Answering
for Spoken Web [294], more work can hopefully be developed
nowadays.

(5) Interactive Retrieval and Efficient Presentation of Re-
trieved Objects (Section VII): The spoken content is difficult
to be shown on the screen and browsed by the user, so the
techniques for efficiently presenting the retrieved objects on an
interactive interface are highly desired. Key term extraction,
title generation, summarization, and semantic structuring for
spoken content are all useful techniques for presenting the
spoken content, but they are still very challenging tasks today,
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and better approaches are yet to be developed. Learning the
experiences from text document processing area on these
problems may be helpful. Also, much more experiences in
human-machine interactions are still to be learned from the
very successful discipline of spoken dialogues.

On the other hand, most works along the above five direc-
tions were proposed and developed individually. Very wide
space for integration among the five directions are actually
possible, although very limited results have been reported.
Directions 1 (Section III) and 2 (Section IV) are actually
orthogonal and can be combined to offer better results. One
such example was mentioned at the end of Subsection IV-D2.
Direction 3 (Section V) doesn’t use ASR so sounds different,
but the acoustic patterns in that direction can be used with
Direction 2 as mentioned above, hopefully also helpful to
Direction 1. Hence, we believe Direction 3 is also orthogonal
to Directions 1 and 2. Directions 4 (Section VI) and 5
(Section VII) are orthogonal to each other, and orthogonal
to Directions 1, 2 and 3, so they add two extra dimensions.
Good examples are in Subsection VI-D (using Direction 2 in
Direction 4) and Subsection VI-E and VI-F (using Direction
3 in Direction 4), although Direction 1 seemed not yet used
in Direction 4. The five directions open quite wide space for
future developments. Of course, we also look forward to seeing
extra directions beyond the above five directions we have seen
presently.

The success of text content retrieval is a major reason of
how the Internet has become an indispensable part of our daily
lives. If spoken content retrieval can be successful, our daily
lives may be further changed and very different. Consider
an example scenario referred to as spoken knowledge orga-
nization here [302]. With the necessity of life-long learning
in the era of knowledge explosion and the rapid prolifera-
tion of Massive Open Online Courses (MOOCs), worldwide
instructors are posting slides and video/audio recordings of
their lectures on on-line platforms, and worldwide learners
can easily access the curricula. However, a major difficulty
for the learners is that it may not be easy for them to spend
tens of hours to go through a complete course, but the course
content is usually sequential. It is not easy to understand a
lecture segment without learning the background, but it is
even more difficult to find where the necessary background is.
Because the speech signals tell exactly the knowledge being
conveyed in these lectures, successful spoken content retrieval
technologies may be able to locate exactly the parts of the
course lectures matched to the learners’ needs, as well as the
necessary background or relevant information for the required
knowledge, all of which may spread over many different
courses offered by many different instructors. This may lead
to the highly desired personalized learning environment for
the large number of worldwide online learners working on
different task domains with different background knowledge
and widely varying learning requirements.

Another example scenario depicting the way our daily lives
may be changed and become very different because of suc-
cessful spoken content retrieval technologies is referred to as
multimedia information management here, or the technologies
that can find, filter, select and manage the information the

user needs from the heterogeneous multimedia resources over
the Internet. Assume a user types a query “David Beckham”
(the name of a globally renowned English former footballer),
in addition to offering the related web pages as what typical
search engines do today, the video recordings of the exciting
moments for the historic games David Beckham participated
in may also be retrieved from the video sharing platforms
based on the audio parts of the videos. The exciting moments
in each of these historic games can even be automatically
summarized by jointly analyzing the video frames and the
audio of the commentators. The interview videos with David
Beckham after these games and the videos about the stories
of David Beckham’s family lives and family members can
also be similarly linked. Note that for these videos the key
information is actually in the spoken part, so successful
spoken content retrieval technologies integrated with other
information management technologies may realize the above
scenario. However, today the search for such videos still rely
on the very limited text descriptions of the videos rather
than the spoken content, but only successful spoken content
retrieval can locate exactly the desired video frames carrying
the desired information. These example scenarios show that
successful spoken content retrieval may bring further major
changes to our daily lives. We are all working towards that
goal, and looking forward to its realization in the future.
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