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Enhanced Spoken Term Detection Using Support
Vector Machines and Weighted Pseudo Examples
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Abstract—Spoken term detection (STD) is a key technology for
retrieval of spoken content, which will be very important to re-
trieve and browse multimedia content over the Internet. The dis-
criminative capability of machine learning methods has recently
been used to facilitate STD. This paper presents a new approach
to improve STD using support vector machines (SVM) based on
acoustic information. The concept of pseudo-relevance feedback
(PRF) well used in the retrieval of text, image and video is used
here. The basic idea of using PRF here is to assume some spoken
segments in the first-pass retrieved results are relevant (or pseudo-
relevant) and some others irrelevant (or pseudo-irrelevant), and
take these segments as positive and negative examples to train a
query-specific SVM.This SVM is then used for re-ranking the first-
pass retrieved results, and only the re-ranked results are shown
to the user. In this paper, feature vectors representing the spoken
segments based on acoustic information to be used in SVM are
considered and analyzed. Furthermore, conventionally in PRF the
items with the highest and lowest scores in the first-pass retrieved
results are respectively taken as pseudo-relevant and -irrelevant,
but in this way some incorrect examples are inevitably included in
the training data especially when the recognition accuracy is poor.
Here we further propose an enhanced SVM which not only better
selects positive/negative examples considering the reliability of the
spoken segments, but emphasizes more on more reliable training
examples by modifying the SVM formulation. Experiments on two
different sets of spoken archives with different speaking styles and
different levels of recognition accuracies demonstrated significant
improvements offered by the proposed approaches.

Index Terms—Pseudo-relevance feedback, spoken term detec-
tion.

I. INTRODUCTION

I N the Internet era, digital content over the Internet covers
almost all the information and activities of human life. The

most attractive form of network content is multimedia including
audio signals. The subjects, topics, and core concepts of such
multimedia content can very often be identified based on the
speech information within the audio part of the content. Hence
spoken content retrieval will be very important in helping users
retrieve and browse efficiently across the huge quantities of
multimedia content in the future [1]. In general, there are two
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stages in most conventional spoken content retrieval approaches
[2]. In the first stage, the audio content is recognized and trans-
formed into transcriptions or lattices by a recognition engine
based on a set of acoustic models and language models. In the
second stage, after the user enters a query, the retrieval engine
searches through the recognition output and returns a list of rel-
evant spoken segments to the user. The returned segments are
usually ranked by the relevance scores derived from the recog-
nition output. This paper is focused on a subtask of the above
spoken content retrieval, spoken term detection (STD), in which
the query is a term in text form and a spoken segment is taken
as relevant if it includes the query term. However, it is cer-
tainly possible to generalize the discussions here to other tasks
in spoken content retrieval.
Substantial research effort has been made in STD, and many

successful techniques have been developed. Lattice-based ap-
proaches taking into account multiple recognition hypotheses
[3], [4] were used to take care of the problem of relatively
low accuracy in 1-best transcriptions. Lattices are usually
converted into sausage-like structures to make the indexing
task easier and save the memory space. Good examples of such
sausage-like lattice-based structures include Position Specific
Posterior Lattices (PSPL) [5], [6], Confusion Networks (CN)
[6], [7], etc. Weighted finite state transducer (WFST) algorithm
also provides another effective way for indexing and retrieving
lattices [8]. The out-of-vocabulary (OOV) query is another
important issue because typically many queries contain OOV
terms [9]. The most fundamental approach for handling the
OOV problem is to represent both the queries and the spoken
segments by properly chosen subword units and then try to
match them on the subword unit level [10]–[20]. Word-based
and subword-based indexing can be further properly integrated
to yield better performance [11], [21], [22]. Many successful
applications have been demonstrated with good examples
including those browsing over broadcast news [23], course
lectures [24], [25], podcasts [26], YouTube videos [27], etc.
There have been some previous works [28]–[31] taking

advantage of the discriminative capabilities of machine
learning methods such as support vector machines (SVMs)
or multi-layer perceptrons (MLPs) to facilitate STD. In those
previous works, a set of training queries and associated rele-
vant/irrelevant segments are assumed available. In such cases,
SVMs or MLPs can be trained to classify whether a spoken
segment contains the entered query term or not. In order to
have these machine learning classifiers properly work for the
target spoken archive, the training data must be reasonably
matched to the target spoken archive, but such data is usually
not available or difficult to collect. In fact, it is very possible
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that the spoken archive includes content produced in different
parts of the world by different speakers on different domains
under different acoustic conditions. This makes collecting a
reasonably good training set very difficult. Moreover, since the
characteristics of the queries are usually very diverse, a single
classifier optimized for many different training queries may not
be able to offer the best solution for the high variety of many
different testing queries. This seems to imply a goal to train a
specific classifier for each query. However, this goal is even
more difficult to realize because it presumes that the training
data good for every specific possible query covering proper
diversity of acoustic and linguistic conditions are available.
On the other hand, pseudo-relevance feedback (PRF), also

known as blind relevance feedback, has been widely used in
information retrieval to obtain relevance information for each
query without actually involving any action from the user. It
has been successfully applied on different retrieval domains
like text [32]–[36], image [37] and video [38], [39]. Conven-
tionally, in PRF, a first-pass retrieval is performed first, and it
is assumed that a small number of top-ranked objects in the
first-pass retrieved results are relevant (or “pseudo-relevant”),
and sometimes in addition some bottom-ranked objects are irrel-
evant (or “pseudo-irrelevant”), and these pseudo-relevant (and
-irrelevant) objects can then be taken as extra information to
improve the retrieval results including used as the training data
for various machine learning approaches. In this way, a set of
training data for each specific query can be obtained, and a
query-specific classifier or model can be learned. Although the
training data thus obtained does not necessarily cover the proper
diversity of acoustic and linguistic information as desired, it
should be reasonably matched to the target spoken archive con-
sidered. Techniques of using machine learning methods in PRF
scenario have been extensively developed for video retrieval
[40] and image retrieval [41], although not yet properly explored
for STD.
This paper reports a new approach to improve STD by SVM

with training data generated by PRF, so a query-specific model
can be trained with a query-specific training data set, which is
optimized for the given query to a certain extent. In this ap-
proach when a query term is entered, the system first gener-
ates first-pass retrieved results ranked according to the rele-
vance scores derived from the lattices. This ranked list is not
shown to the user. The system then selects some spoken seg-
ments from this ranked list as pseudo-relevant segments (or pos-
itive examples) and pseudo-irrelevant segments (or negative ex-
amples) based on some criteria. These positive and negative
examples are then used to train a query-specific model based
on SVM. Then all segments on the first-pass retrieved list are
re-ranked using this query-specific SVM obtained with query-
specific training data. The system finally displays the re-ranked
results to the user.
To train the above SVM model, each spoken segment in the

first-pass retrieved list should be represented as a feature vector
containing sufficient information for evaluating its relevance
with respect to the query term. Approaches of using acoustic
information for constructing such feature vectors are proposed
here in this paper. This is inspired from the previous works
[42]–[45], in which the concept all segments including the query

terms should include some parts of the signal exhibiting sim-
ilar characteristics in acoustic features was verified to be useful.
In these previous works, the STD systems simply increased the
relevance scores of the spoken segments similar to those with
higher scores, and the similarities were evaluated based on the
dynamic time warping distances between the acoustic feature
sequences of the signal regions hypothesized to be the query
terms. In this paper, we realize the above concept using com-
pletely different methods of machine learning. The top- and
bottom-ranked spoken segments in the first-pass retrieved re-
sults can be respectively taken as positive and negative exam-
ples, and this approach has been shown to be very helpful [46].
However, in this way some incorrect examples are inevitably
included in the training data especially when the recognition
accuracy is poor. In this paper, to further enhance the scenario
of PRF, we propose an approach to select better positive and
negative example sets not restricted to top- and bottom-ranked
segments from the first-pass results, and evaluate a presumable
reliability for each example. We further modify the SVM for-
mulation such that less reliable examples have less effect upon
the SVM model learned.
In comparison with the previous works which utilize a set

of training queries for learning a discriminative model to fa-
cilitate STD [28]–[31], the proposed approach has several ben-
efits. First of all, the proposed approach does not really need
any training data because the training examples for each query
are automatically generated. Second, since in the proposed ap-
proach the retrieval result of the query entered is re-ranked by
a query-specific SVM model, the proposed approach may out-
perform those previous methods which learn a general model
from a training query set. However, those previous methods can
be integrated with the approach proposed here. With a set of
training queries, the system is able to learn a model generating
better first-pass retrieved results, which yieldmore accurate pos-
itive/negative examples for SVM training in PRF.
Below, the framework for improved STD using SVM with

PRF is first presented in Section II. The feature vectors used
to represent each spoken segment are introduced in Section III.
In Section IV, we describe the enhanced PRF which includes
a better example selection strategy in Section IV-A and modi-
fied SVM in Section IV-B. Sections V and VI then report the
experimental results. The concluding remarks are finally made
in Section VII.

II. BASIC FRAMEWORK FOR STD USING SVM WITH PRF

Fig. 1 shows the basic framework for the proposed approach.
In the first-pass retrieval process as described in Section II-A
below, conventional STD technologies are used to rank the
spoken segments based on the relevance scores derived from
the lattices with respect to the entered query term . On the
left lower part of the figure is the list of first-pass retrieved
results, which is not shown to the user. As will be presented
in Section II-B below, some spoken segments in the first-pass
retrieved list are selected as the pseudo-relevant and -irrelevant
spoken segments, or positive and negative examples, serving
as the training data for the query-specific SVM model, which
will be used for determining the relevance between all seg-
ments in the first-pass retrieved results and the query term
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Fig. 1. The framework for spoken term detection (STD) using support vector
machines (SVM) with pseudo-relevance feedback.

for re-ranking. In Section II-C, based on the relevance of the
spoken segments derived from the SVM model, the segments
are finally re-ranked. This re-ranked list is then shown to the
user.

A. First-Pass Retrieval

The whole spoken archive to be retrieved is first divided into
spoken segments, each corresponding to approximately an ut-
terance. Each spoken segment in the spoken archive is then
transcribed into a lattice . When a query term , which can
be either a word or a phrase in text form, is entered, the retrieval
engine searches through the lattices for all segments in
the spoken archive and returns a list of spoken segments pos-
sibly containing the query term. Here all spoken segments re-
trieved are ranked by their degree of relevance with respect to
the query , represented by a relevance score ,

(1)

where is an allowed word sequence in the lattice ,
is the likelihood for the observation sequence for the segment
given the word sequence based on the acoustic model set,
is the prior probability of from the language model, and
is the occurrence count of the query in . Since the

denominator in (1) is the sum of the likelihoods of all word se-
quences in the lattice, while the numerator of (1) is the same
but with all word sequences weighted by the occurrence count
of the query , (1) can be interpreted as the expected occur-
rence count of the query based on the lattice . Such a
relevance score in (1) is standard and widely used in STD [5],
[31], [47]–[50].

B. SVM Model Training (Plain SVM)

As shown in Fig. 1, some spoken segments in the first-pass re-
trieved list are respectively taken as pseudo-relevant and -irrel-
evant spoken segments, and they are considered as positive and
negative examples to train an SVM model. To train this SVM
model, each spoken segment should be represented by a fea-
ture vector as will be presented further in Section III. A
simple but effective way for the above positive and negative

example selection is to respectively take the top and bottom
segments on the first-pass returned list as positive and negative
examples. More sophisticated approach for example selection
will be described later in Section IV.
Suppose that a positive example set,

, and a negative example set,
, are obtained from the first-pass

results, where and are respectively the numbers of
positive and negative examples.1 An SVM model characterized
by a weight vector can be learned to measure the relevance
of each segment with respect to the query based on these
examples. The SVM model is learned by solving the
following optimization problem [51]:

(2)

such that

The constraints above require that the inner products of and
the feature vectors of all positive examples should be
larger than one, while the inner products of and the feature
vectors of all negative examples smaller than neg-
ative one. Each constraint is padded with a per-example slack
variable ( for positive example and for negative example

). The sum of the slack variables over the training examples
is minimized to reduce the degree of constraint violations to the
smallest extent. The norm of the vector to be learned and
the scale of the slack variables for positive and negative exam-
ples are respectively traded off with the parameters and .
Based on (2), tend to be larger for positive examples (or
pseudo-relevant segments), and smaller for negative examples
(or pseudo-irrelevant segments), so for each segment
in the first-pass retrieved results can be used for measuring the
confidence to be relevant with respect to the query term. This
SVM model formulated in (2) will be referred to as Plain SVM
below, as compared to the enhanced version referred to as En-
hanced SVM to be presented later.

C. Re-Ranking

SVM-derived confidence score is then obtained by lin-
early normalizing the inner product into a real number
between 0 and 1:

(3)

where and are respectively the maximum and min-
imum values of the inner products among all the seg-
ments in the first-pass retrieved list. The new relevance score

for re-ranking the segment is then obtained by inte-
grating the original relevance score in (1) with the con-
fidence score in (3) as

(4)

1If top and bottom segments in the first-pass results are selected as the
examples, then .
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where is a weight parameter. A new ranking list is thus gen-
erated based on the new relevance scores in (4) to be shown to
the user.

III. FEATURE VECTOR REPRESENTATIONS BASED
ON ACOUSTIC INFORMATION

In order to train an SVM model for each query term as
mentioned above, each spoken segment needs to be represented
by a feature vector. The basic idea here is that the MFCC
vector sequences representing different occurrences of the
same term should be similar in some way; while very different
MFCC vector sequences very possibly imply different terms.
It is therefore possible to discriminate relevant and irrelevant
spoken segments by comparing the MFCC vector sequences
with the pseudo-relevant and -irrelevant segments based on
the signal parts hypothesized as the query. In this section, we
show the method representing the MFCC vector sequences as
a feature vector.
Here we first define the “hypothesized region” for a spoken

segment with respect to a query to be the part of the MFCC
vector sequence for the segment corresponding to a word arc in
the lattice whose word hypothesis is exactly the query term
with the highest posterior probability, as shown in Fig. 2(a) at
the upper left corner of the figure. Note that the hypothesized re-
gion is a sequence ofMFCC vectors with variable length, but for
SVM model training and testing, it is more convenient to rep-
resent different spoken segments by feature vectors with fixed
dimensionality. Fig. 2(b), (c) and (d) illustrate three different
ways to accomplish this goal as follows.
• Term-based Average: All MFCC vectors in the hypothe-
sized region for the query term are averaged into a single
feature vector, so the dimensionality of the feature vector is
the same as that of each MFCC vector. The value of each
component of this feature vector is the average of all the
corresponding components of the MFCC vectors in the hy-
pothesized region. This is denoted by and is shown
in Fig. 2(b) at the upper right corner of the figure.

• Phone-based Average and Concatenation: The hypothe-
sized region is divided into a sequence of phone segments
based on the phone boundaries obtained during the lattice
construction. Each phone segment is then represented by
the average of the MFCC vectors in the phone segment.
The concatenation of these averaged MFCC vectors repre-
senting the phone segments then gives the feature vector
for a spoken segment. Thus for a query term including
phones the dimensionality of the feature vector is times
of the dimensionality of a single MFCC vector. This is de-
noted by and shown in Fig. 2(c) at the lower left
corner of the figure.

• State-based Average and Concatenation: Each phone
segment is further divided into a sequence of state seg-
ments according to the HMM state boundaries obtained
during the recognition, each of which is again represented
by the average of the MFCC vectors. All these averaged
vectors for HMM states in a hypothesized region are then
concatenated as a feature vector. Thus for -state phone
HMMs the dimensionality of such a feature vector is
times of the dimensionality of . This is denoted as

Fig. 2. Different forms of feature vector representations. (a): the definition of
a “hypothesized region” in the lattice of segment for the query term , where

are some other word hypotheses different from . (b), (c) and (d):
the feature vectors , and respectively.

and is shown in Fig. 2(d) at the lower right corner of
the figure.

Although in the above we only mention MFCC vectors, and in
the experiments below only results using MFCC vectors are re-
ported, certainly many other representations for acoustic infor-
mation of speech can be used as well. A good example may be
the Gaussian posteriorgrams [52], [53] which may take better
care of the speaker variability issue since the target spoken seg-
ments may be produced by many different speakers.

IV. ENHANCED SVM

In conventional PRF scenario, the top/bottom segments
in the first-pass results are taken as positive/negative examples.
However, in this way, it is unavoidable to include some incor-
rect examples (irrelevant segments taken as positive examples,
and vice versa) in the training data especially when the recogni-
tion accuracy is relatively poor. To better handle this problem, in
Section IV-A below, we propose that better sets of positive/neg-
ative examples not restricted to top and bottom segments can
be carefully selected, and the reliability for each selected ex-
ample can be further estimated. In Section IV-B below, we fur-
ther propose that the formulation of SVM can be modified to
learn primarily from the presumably correct examples during
training, while reduce the influence of those unreliable exam-
ples on the model learned.

A. Training Example Selection and Reliability Estimation

Because the same terms may exhibit similar acoustic char-
acteristics, relevant segments may show certain degree of sim-
ilarity to each other in terms of their feature vectors ,

and as defined in Section III, and the feature vec-
tors for relevant and irrelevant segments may be far apart. Be-
cause the top/bottom segments in the first-pass results usu-
ally have higher probabilities to be relevant/irrelevant, the rel-
evance of each segment can be estimated to some extent based
on the similarity of its feature vector with those of the top- and
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bottom-ranked segments. Based on this concept, we can obtain
positive/negative example sets not restricted to top and bottom
segments. For each segment in the first-pass retrieved list, its
similarity with respect to the top and bottom segments is first
computed based the distances between their feature vectors. If a
spoken segment is similar to more top segments than bottom
segments, it may be taken as a positive example, and the dif-

ference between its similarity to top and bottom segments
can be considered to be proportional to the reliability of this
example. On the contrary, a spoken segment similar to more
bottom segments may be taken as a negative example, and
its reliability can be estimated similarly. Such a concept can be
realized by the procedure below.
The following procedure is derived to obtain a set of positive

examples and a set of negative examples in which each
example has a value proportional to its reliability.
(i) Each segment in the first-pass result is first assigned an
initial score , which is 1 for top segments, 1 for
bottom segments, and 0 for the others.

(ii) Compute the similarity between each segment
pair for all and in the first-pass results based
on the Euclidean distance of their feature vectors,

(5)

where is the feature vector of segment , which
can be either , or in Section III, and
is the variance of the values of for all

segment pairs in the first-pass retrieved list for
the given query. Therefore, is between 0 and 1,
and smaller implies larger .

(iii) Find the nearest neighbors for each segment based
on , or the segments with the highest sim-
ilarity , which is denoted as .

(iv) Then a score is computed for each segment ,
which is to be used in the next step. is the inter-
polation of ’s initial score obtained in step (i)
and the initial scores of its “nearest neighbors of
both directions”2 weighed by their similarities :

(6)

where the summation is over all segments which is
among the nearest neighbors of of both directions,
and is the interpolation weight. The first term on the
right hand side of (6) implies only of the initial
score is kept with the segment , while the second
term implies of the initial scores of segments
who are nearest neighbors of weighted by are
added to the score of . If many of ’s nearest neighbors
are top segments with initial scores of 1, may be
increased, and it can be positive with large value regard-
less of whether its initial score is 1, 1 or 0. Likewise,
if most of ’s nearest neighbors are bottom segments

2 is among the nearest neighbors of and vice versa

with initial scores 1, may be reduced and can be
very negative.

(v) All segments are taken as positive examples for SVM
training if , and taken as negative examples if

. We further define , which is
considered to be proportional to the reliability for example
, regardless of whether is positive or negative.

If in (6) is 0, the above procedure reduces to taking top and
bottom segments as training examples, and for all
of these examples, or exactly the plain SVM in Section II-B.

B. SVM Enhancement

With the procedure in the above subsection, new sets of posi-
tive examples and negative exam-
ples are obtained, where and
are the numbers of positive and negative examples respec-

tively. For each example , there is a positive real number
proportional to the reliability of the example. To learn better
from these examples considering their reliability, the formula-
tion of SVM in (2) can be slightly modified to include
obtained above. There are at least three possible modifications
as listed below:
• Slack Variable Scaling [54]: In this approach, the slack
variable corresponding to each example is scaled by

,

(7)

such that

Because the slack variables and are scaled by

and in (7), those examples with higher reliability,
whether positive or negative, are given higher priority
when training the SVM model to minimize (7), while
less emphasis is given to examples with lower reliability.
Therefore, the weight vector learned naturally considers
the reliability of the examples.

• Margin Scaling: Here the original margins 1 and 1 for
SVM are replaced by and obtained here for
each example,

(8)

such that

In the above constraints, clearly examples with higher reli-
ability are required to have larger margins. Hence, to min-
imize (8), the weight vector learned in this way should
try to give positive examples with higher reliability larger
values of , or locate them farther away from the
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dividing hyperplane. For positive examples with lower re-
liability, on the other hand, smaller values of may
be acceptable, or they can be closer to the dividing hyper-
plane. The negative examples are considered in the similar
way. In other words, the model thus learned should better
separate positive and negative examples with large relia-
bility because of the larger margins, but pay less attention
on discriminating the less reliable examples.

• Combined Slack Variable & Margin Scaling: Certainly, it
is possible to scale both the slack variables and the margins
simultaneously:

(9)

such that

In the above three cases, when for all positive and
negative examples, the three enhanced SVMs are reduced to the
plain SVM in (2).

V. EXPERIMENTAL SETUP

We tested the proposed approaches on two different sets of
spoken archives. The first was a set of recorded lectures for
a course (Lecture), and the second a set of broadcast news
(News). Mean average precision (MAP) [55] was used as the
retrieval performance measure. Pair-wise t-test [56] with sig-
nificance level at 0.05 was used to test the significance for the
performance improvement. The package CVXOPT3 was used
for SVM optimization. and in (2), (7), (8) and (9) were
both set to be the inverse of the average of the norms for the
feature vectors of all segments in the first-pass retrieved list, as
was done previously.4 The parameter in (4) was set to 10 in
all the experiments. The setup for the experiments for the above
two sets of testing spoken archives are described below.

A. Lecture

This is a corpus of 45 hours of recorded lectures for a course
offered at National Taiwan University. We split the corpus into
two parts: 12 hours for acoustic model training and 33 hours for
testing. Retrieval tests were performed over the testing set. This
spoken archive was produced by a single instructor, primarily
in Mandarin Chinese but with many English words embedded
in the Mandarin utterances. Another set of slides for the lectures
were also available, which is completely in English. The lexicon
used here was a combination of a Chinese dictionarywith 10.7K
words plus 2 K English words taken from the slides. Because of
the lack of corpora matched to the topic (technical content of the
course) and the style (spontaneous monologue) for the spoken
archive considered here, a Chinese trigram language model was
first trained from the Mandarin Giga-word corpus5 released by

3http://abel.ee.ucla.edu/cvxopt/.
4SVM-light used the same strategy to derive the parameters if not given.
5http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?cata-

logId=LDC2005T14

TABLE I
1-BEST CHARACTER ACCURACIES (FOR MANDARIN CHINESE PARTS) OF

Lecture FOR DIFFERENT SETS OF ACOUSTIC MODELS

Linguistic Data Consortium. We also trained an English uni-
gram language model from the slides, and then linearly inter-
polated it with the above Chinese trigram model. Each spoken
segment in the corpus was transcribed into a lattice with beam
width 50. 162 Chinese queries were manually selected as testing
queries, each consisting of a single word.
In order to evaluate the performance of the proposed ap-

proach under different recognition accuracies, we used four
sets of acoustic models for generating the lattices:
• Speaker Independent Model (SI): trained by Maximum
Likelihood criterion with 4602 state-tied triphones
spanned from 35 Mandarin monophones, using a corpus
of clean read speech in Mandarin including 24.6 hours of
data produced by 100 males and 100 females.

• Speaker Adaptation Model 1 (ADP1): adapted from the
above SI model with 500 utterances (about 20 minutes)
taken from the training set of the Lecture corpus men-
tioned above. Only global MLLR was applied.

• Speaker Adaptation Model 2 (ADP2): adapted from the SI
model with 500 utterances just as ADP1 above, but with
MLLR with 256 classes followed by maximum a posterior
estimation.

• Speaker Dependent Model (SD): trained on the 12-hour
training set of the Lecture corpus mentioned above with
6620 state-tied triphones spanned from 35 Mandarin
monophones and 39 English monophones.

In the first three cases, since the acoustic models (SI, ADP1
and ADP2) were based on Mandarin phonemes only, the Eng-
lish words embedded in the Chinese utterances were transcribed
into Chinese word sequences with similar pronunciation, which
made the retrieval task more challenging. In the last case, the
speaker dependent models (SD) included triphones developed
from the phoneme set including both Mandarin and English
phonemes, it was therefore possible to transcribe the English
words correctly. The character accuracies (for Chinese parts
only) of the 1-best transcriptions with the four different sets of
acoustic models are shown in Table I.

B. News

We used a broadcast news corpus in Mandarin Chinese6 as
the second spoken archive for testing. The news stories were
recorded from TV stations in Taipei from 2001 to 2003, with a
total length of 198 hours [57]. 174 Chinese queries were manu-
ally selected as testing queries, each consisting of a single word.
For the recognition of News, we used a 60 K-word lexicon,

a tri-gram language model trained on 39 M words of Yahoo
news, and a set of acoustic models with 64 Gaussian mixtures
per state and 3 states per model trained on a corpus of 24.5
hours of broadcast news different from the archive tested here.

6publicly available via Association for Computational Linguistics and Chi-
nese Language Processing (ACLCLP)
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Fig. 3. MAP performance for Lecture with SI models yielded with feature
vectors , and in Section III with plain SVM in Section II-B:
top/bottom segments in the first-pass results were selected as positive/nega-
tive examples. is the size of the positive/negative example sets used in SVM
training.

147 right context-dependent Initial models plus context-inde-
pendent Final models7 were used as the acoustic models, and
39-dimension MFCCs with cepstral mean and variance normal-
ization (CMVN) applied were used as the acoustic features.
Each spoken segment in the corpus was transcribed into a lat-
tice with beam width 100. Since 48% and 31% of the speech in
the corpus was produced by the reporters and respondents re-
spectively in quite spontaneous form including relatively high
background noise, and only 147 acoustic models were used here
for simplicity, the character accuracy for the archive was only
54.43%.

VI. EXPERIMENTAL RESULTS

A. Different Feature Vectors and Plain SVM

First of all, we tested the performance of feature vectors
, and in Section III for plain SVM, that

is, top and bottom segments in the first-pass results were
taken as positive/negative examples to train the SVM model.
Fig. 3 shows the MAP performance for Lecture as functions
of ,8 or the size of positive/negative example sets used in
SVM training. Only the results for the speaker independent (SI)
models were shown in Fig. 3. The points for represent
the original first-pass results which are taken as the baseline.
We found that yielded no improvement obviously be-

cause the query term usually included a sequence of phonemes,
but the acoustic characteristics of the different phonemes in
the MFCC vector sequence were averaged and smoothed in

, which could not represent the hypothesized region. More
sophisticated feature vector representations, or ,
yielded improvements because the acoustic characteristics for
each phoneme or even each HMM state were used, which
therefore represented the hypothesized region much better.

obviously performed the best, or the HMM states were
able to represent very well the acoustic characteristics within
a hypothesized region. Similar results were obtained for other
sets of acoustic models, ADP1, ADP2 and SD, but left out here.

7“Initial” is the initial consonant of a Mandarin syllable, and “Final” is the
vowel or diphthong part but including the optional medial and nasal ending.
8If in the first-pass results there were fewer than spoken segments,

was simply set to half of the number of retrieved segments.

TABLE II
MAP PERFORMANCE YIELDED WITH FEATURE VECTOR IN SECTION III
FOR PLAIN SVM WHEN DIFFERENT NUMBERS OF TOP/BOTTOM SEGMENTS

IN THE FIRST-PASS RESULTS WERE SELECTED AS POSITIVE/NEGATIVE
EXAMPLES FOR THE TWO TESTING SPOKEN ARCHIVES Lecture AND News,
AND FOUR DIFFERENT ACOUSTIC MODEL SETS, SI, ADP1, ADP2, AND SD,
FOR Lecture. THE FIRST-PASS RESULTS OBTAINED BEFORE PRF ARE TAKEN
AS THE BASELINES, AND THE SUPERSCRIPT LABELS INDICATE SIGNIFICANTLY
BETTER THAN THE BASELINES IN TERMS OF THE PAIR-WISE T-TEST WITH

SIGNIFICANCE LEVEL AT 0.05

Table II shows the MAP performance yielded with the fea-
ture vector with plain SVM when different numbers of
top/bottom segments were taken as positive/negative examples.
in Table II is the number of top/bottom segments used

in training. The results for the two testing spoken archives
Lecture and News are listed here with four different sets of
acoustic models for Lecture, SI, ADP1, ADP2 and SD. The
first-pass results obtained before PRF are taken as the baselines,
and the superscript labels indicate significantly better than
the baselines in terms of the pair-wise t-test with significance
level at 0.05.
We can easily find that the plain SVM trained with feature

vector when taking top and bottom segments as
training examples always offered some improvements in all
cases as compared to the baseline for both Lecture and News
archives, all different sets of acoustic models for Lecture,
and all values of tested here. The improvements achieved
were always significant except for SD models for Lecture with

and for News with . From Table II, we also
observed that as the example set size was raised the MAP
first increased and then slightly decreased in most cases. This is
reasonable because larger implied more training data were
used in training the SVM model, and the disturbances caused
by the incorrect assumption about the relevance of the training
segments (irrelevant segments assumed to be relevant and vice
versa) can be diluted. However, when was very large, since
usually there were only limited number of relevant segments
for each query, more irrelevant segments were inevitably in-
cluded in the pseudo-relevant training set and taken as relevant,
which caused the performance degradation. In the case of SD
models for Lecture, the improvements became insignificant
when . This is the case of acoustic models with very
good quality, or the segments were reasonably well ranked
in the first-pass retrieved list. Hence, we may assume most
relevant segments were within the top 25 or less. For

, some irrelevant segments were inevitably included
and taken as positive examples, which is very probably the
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Fig. 4. Distribution of absolute MAP improvement versus the training data purity for each query for Lecture with feature vector when taking top/bottom
10 segments as training examples ( in Table II). Training data purity is the average of the percentages of pseudo-relevant segments being relevant and
pseudo-irrelevant segments being irrelevant. Each point in the figures represents a query. The curves in the figures are the quadratic trend lines. (a), (b), (c) and (d)
are respectively for the results with different sets of acoustic models, SI, ADP1, ADP2, SD.

reason that the improvements became insignificant. For the
results of News, the improvements were always significant
except . This is probably because News contains speech
produced by many different speakers under many different
environments, so enough training data were necessary to cover
enough acoustic variations.
Since we were never able to ensure all the pseudo-relevant/-

irrelevant training data were correct, PRF was not supposed to
improve the performance of every query. We may assume that
PRF improved the performance of some queries but degraded
that of the others. Our goal was simply that the former occurred
much more than the latter. Here we are interested to see how
SVM with performed with such corrupted training data.
We first define the training data purity for each query as the
average of the percentages of pseudo-relevant segments being
actually relevant and pseudo-irrelevant segments being actually
irrelevant. Fig. 4 shows the distribution of the absolute MAP
improvement achieved with each query versus the training data
purity for that query with for Lecture when taking top
and bottom 10 segments as examples ( in Table II).
Fig. 4(a), (b), (c) and (d) are respectively for the four different
sets of acoustic models, SI, ADP1, ADP2 and SD. Each point
in the figures represents the results for one query, with vertical
scales being the absolute MAP improvement for the query, and
the horizontal scales being the training data purity. Negative
improvement means the MAP performance for the query was
actually degraded after PRF. The curves in the figures are the
quadratic trend lines.
At the first glance of Fig. 4, it seems surprising that higher

training data purity did not always imply larger MAP improve-
ment. This is probably because the queries with higher training
data purity usually had higher MAP for the first-pass retrieved
results, the space left for further improvement was therefore lim-
ited. On the other hand, we can see in all four cases in Fig. 4

TABLE III
PERCENTAGE OF QUERIES WITH MAP PERFORMANCE DEGRADED AFTER PRF
WITH FEATURE VECTOR WHEN TAKING TOP/BOTTOM 10 SEGMENTS

AS TRAINING EXAMPLES ( IN TABLE II)

the MAP improvements were positive for much more queries,
although also inevitably negative for some smaller number of
queries. The very corrupted training data really degraded the
performance, but we also observed that even when the training
data purity was less than 70%, MAP improvements were still
achieved for some queries.
Table III shows the percentage of queries whose MAP was

degraded after PRF with feature vector when taking
top/bottom 10 segments as training examples ( in
Table II). The results for Lecture with SI, ADP1, and ADP2
models look reasonable (around 15%), or roughly for 85%
of queries the performances were improved after PRF. The
situation was worse for SD of Lecture (27.78%) and the worst
for News (35.00%). A possible reason for the situation of News
is that it covered a wide variety of speakers and environments,
which made the feature vector based on MFCC vector
sequences relatively inadequate. However, MAP performance
of 65% of the queries for News was still improved by PRF in
that case.

B. Enhanced SVM

In this section, the enhanced SVM described in Section IV is
tested and analyzed. Because the feature vector yielded
the best results in Fig. 3 above, only was used in the fol-
lowing experiments.
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TABLE IV
MAP PERFORMANCE FOR Lecture WITH SI MODELS YIELDED BY THE
ENHANCED SVM IN SECTION IV WITH FEATURE VECTOR . (a) FOR
PLAIN SVM TAKING TOP/BOTTOM SEGMENTS AS

TRAINING EXAMPLES (BASELINE), AND (B) FOR ENHANCED SVM WHERE THE
TOP/BOTTOM SEGMENTS WERE ASSIGNED SCORES OR 1
AT THE STEP (i) OF THE PROCEDURE IN SECTION IV-A, BUT THE SIZES OF
POSITIVE/NEGATIVE EXAMPLE SETS DEPENDED ON THE VALUES OF

OBTAINED IN STEP (iv) OF THE PROCEDURE INCLUDING Slack Variable Scaling
(COLUMN (b-1)), Margin Scaling (COLUMN (b-2)), AND Combined Slack
Variable & Margin Scaling (COLUMN (b-3)). IN (6) AND
FOR STEP (iii) IN SECTION IV-A. THE SUPERSCRIPT LABELS INDICATE

SIGNIFICANTLY BETTER THAN THE CORRESPONDING RESULTS IN COLUMN (a)

In Table IV, MAP performance for Lecture yielded by the
enhanced SVM is presented. Only the results for SI models are
reported. Column (a) is the results for plain SVM taking the top/
bottom segments as training examples with ranged from 5
to 50, which was used as the baseline here. Therefore, the results
in Column (a) were simply copied from the Lecture SI column
of Table II. Section VI-B is for the enhanced SVM, in which
the top/bottom segments were first assigned initial scores

or 1 at step (i) of the procedure in Section IV-A,
but the sizes of positive/negative example sets finally depended
on the values of obtained in step (iv) of the procedure. in
(6) was set to 0.8, and was set to 5 at the step (iii) of the pro-
cedure in Section IV-A. As in Section IV-B, the SVM can be en-
hanced in three ways, Slack Variable Scaling, Margin Scaling,
and Combined Slack Variable & Margin Scaling, respectively
corresponding to columns (b-1), (b-2) and (b-3) in Section VI-B.
The superscript labels indicate significantly better than the cor-
responding results in column (a) for the same .
We can observe that the results using Slack Variable Scaling

were close to but not able to surpass the baseline (columns
(b-1) vs (a)), whereas Margin Scaling outperformed the base-
line (columns (b-2) vs (a)) for all values of , but the improve-
ments were not significant except for . This is prob-
ably because Margin Scaling in (8) utilized the scores
more aggressively than Slack Variable Scaling in (7). In Slack
Variable Scaling, the effects of or proportional

to the reliability of the segments or in (7) were in fact

deleted if or were zero, or or were outside of the
margin, so the values of for most examples did not
have any effect on the training results. On the other hand, in
Margin Scaling, the values of were used to define the
margins of the constraints, or of every example influ-
enced the model learned. It is clear that Combined Slack Vari-
able & Margin Scaling offered the best improvements over the

baseline, and the improvements were significant regardless of
(columns (b-3) vs (a)). Below only the results for the Com-

bined Slack Variable&Margin Scalingwere reported for further
discussion.
Fig. 5 shows the MAP performance comparison for Lecture

yielded by plain SVM in Section II-B and enhanced SVM in
Section IV as functions of with feature vector very
similar to Table IV. However here Fig. 5(a), (b), (c) and (d) re-
spectively show the results for different sets of acoustic models,
SI, ADP1, ADP2 and SD, and in each case for the enhanced
SVM the results for different choices of the values of , or
the number of nearest neighbors considered, are shown. There-
fore, the curves of plain SVM and enhanced SVM
in Fig. 5(a) are respectively columns (a) and (b-3) of Table IV.
Same as Table IV, in (6) was set to 0.8.
First consider Fig. 5(a), (b) and (c). We can observe that en-

hanced SVM always offered improvements over the plain SVM
with SI, ADP1 and ADP2 models in all cases regardless of the
values of and , except . In other words, the enhanced
SVM started with only top/bottom 5 segments may
not work reasonably, but became very well as long as .
This verified the effectiveness of the proposed approach. For the
enhanced SVM with SI model, offered slightly better
performance than , and for ADP1 and ADP2 models,

and 10 were comparable in MAP performance. This im-
plied that the proposed enhanced SVMwas not very sensitive to
the value of as long as was large enough to consider suffi-
cient neighbors. When was equal to 1, subtle improvements
over the baselines were still observed. However, different situ-
ation occurred for SD models in Fig. 5(d). Since the SD models
were of very high quality (1-best character accuracy of 84.08%
in Table I), the first-pass retrieved results were in fact ranked
very well. In that case, selecting top/bottom segments may be
sufficient to generate positive/negative example sets with very
high training data purity. This is probably why the enhanced
SVM may not offer too much benefit over the plain SVM.
Fig. 6 is exactly the same results as those in Fig. 5, except

for News rather than for Lecture. The general trends observed
on the results for News in Fig. 6 were consistent with those on
Lecture in Fig. 5. The enhanced SVM was superior than plain
SVM regardless of the values of and .
Table V presents the MAP performance yielded by the en-

hanced SVM but with different values of in (6) ( for
all results reported above) with and . (or
the plain SVM) is taken as the baseline here. The superscript la-
bels indicate significantly better than the baseline. The highest
MAP in each column was in bold. For the results of Lecture,
we observed that with SI, ADP1 and ADP2 models better MAP
were achieved with larger values of . The peaks of the MAP
performance were reached when was 0.9, 0.8 and 0.9 for SI,
ADP1 and ADP2 respectively. Note that is the interpolation
weight between the two terms in (6). A larger value of implies
a smaller weight of the first term in (6), or a smaller weight for
the initial score in evaluating the function . This im-
plies the initial assignments for the positive/negative examples
were less reliable, which should be compensated by the higher
weighted initial scores of nearest neighbors in the second
term of (6). This is exactly the case for relatively poor acoustic
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Fig. 5. MAP performance for Lecture respectively with four sets of acoustic models SI, ADP1, ADP2 and SD yielded by the plain SVM in Section II-B and the
enhanced SVM in Section IV (Combined Slack Variable and Margin Scaling only) as functions of with feature vector . Results of different choices of
are compared, where is the number of nearest neighbors considered in step (iii) in Section IV-A. The plain SVM (blue curves) are the baselines. For plain SVM,
is the size of positive/negative example sets. For enhanced SVM, the initial scores or 1 were assigned to the top/bottom segments at step (i) of

the procedure in Section IV-A, but the sizes of positive and negative example sets depended on the values of obtained in step (iv) of the procedure. (a) SI
model; (b) ADP1 model; (c) ADP2 model; (d) SD model.

Fig. 6. MAP performance for News yielded by the plain SVM and enhanced
SVM (Combined Slack Variable and Margin Scaling) as functions of for
different values of with feature vector , very similar to those in Fig. 5,
except for News here rather than for Lecture.

models SI, ADP1 and ADP2, and explains why for SD models
with very high recognition accuracy gave the highest
MAP. ForNews, with relatively poor accuracy, we similarly ob-
serve that larger led to better performance, and the best result
was achieved at .

C. Comparison With User Relevance Feedback

All approaches discussed above are based on SVM in the sce-
nario of PRF. Another related scenario is user relevance feed-

TABLE V
MAP PERFORMANCE YIELDED BY PLAIN SVM AND ENHANCED SVM
BUT WITH DIFFERENT VALUES OF IN (6) ( FOR ALL

RESULTS REPORTED ABOVE) WITH AND .
(OR THE PLAIN SVM) IS TAKEN AS THE BASELINE. THE SUPERSCRIPT
LABELS INDICATE SIGNIFICANTLY BETTER THAN THE BASELINE.

THE HIGHEST MAP IN EACH COLUMN WAS IN BOLD

back, and in this subsection we wish to compare the proposed
approach with user relevance feedback. The scenario of user rel-
evance feedback is very similar to PRF, except that the user pro-
vides the positive/negative examples for training, so we know
they are exactly relevant/irrelevant, while in PRF these exam-
ples are only pseudo-relevant/-irrelevant derived by the system.
In the experiment below, in the scenario of user relevance

feedback, we assume the user browsed the first-pass retrieved
list from the top, and gave the system the relevance informa-
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TABLE VI
THE COMPARISON OF THE PROPOSED APPROACH WITH PRF AND USER RELEVANCE FEEDBACK IN TERMS OF MAP. ROW (a) IS THE MAP

PERFORMANCE OF THE FIRST-PASS RESULTS. SECTION VI-B IS THE RESULTS FOR THE PROPOSED APPROACH WITH PRF, INCLUDING ROW (b-1) FOR
PLAIN SVM WITH AND ROW (b-2) FOR ENHANCED SVM WITH , AND . SECTION VI-C IS THE RESULTS FOR
USER RELEVANCE FEEDBACK WHEN THE CORRECT RELEVANCE INFORMATION OF THE TOP 20 SEGMENTS IN THE FIRST-PASS RETURNED LIST WAS
GIVEN , INCLUDING THE UPPER BOUND RESULTS IN ROW (c-1) ASSUMING THE RANKING OF ALL THE SEGMENTS INCLUDING THE TOP 20
ALREADY SEEN BY THE USER COULD BE RE-RANKED, AND ROW (c-2) IN WHICH THE RANKING OF THE TOP 20 SEGMENTS IN THE LIST WERE FROZEN

tion (relevant or irrelevant) for each of the top spoken seg-
ments on the list.9 These segments labelled by the user were then
taken as positive and negative examples for training the SVM
to be used for re-ranking the spoken segments in the first-pass
retrieved list below the top segments following exactly the
same process as described in Section II-C. The sizes of pos-
itive/negative example sets were not but depended on the
user information.10 Note that here the positive/negative exam-
ples were labelled by the user and known to be correct, so the
enhancement processes described in Section IV considering the
reliability of the pseudo-relevant/-irrelevant examples by the
function are not needed at all. Therefore, only the plain
SVM was used here without any enhancement processes. Note
that in evaluating MAP the order of the top labelled spoken
segments should be “frozen” [58], [59]. Because in practice
these top spoken segments have been seen by the user and
given the relevance information, re-ranking them is meaning-
less. This concern does not exist for PRF.
Because the users usually browse the retrieved objects based

on the ranking orders provided by the system, the assumption
that the user labels the top objects on the returned list in
the experiments here is quite realistic [59], [60]. Nevertheless,
this assumption is not always true. In the scenario of relevance
feedback, for example, the system can actively learn more from
the users by asking the users to label the most confused objects
[61]. However, from the users’ perspective, browsing the ob-
jects based on the ranking orders gives them the opportunities to
see the most relevant objects (if the system performance is good
enough), whereas in active learning their time can be wasted for
labelling the objects not very relevant.
Table VI presents the comparison of MAP performance

yielded by the proposed approach with PRF and by user rel-
evance feedback. Row (a) is the MAP performance of the
first-pass results as the baseline. Section VI-B is the results for
the proposed approach with PRF, including row (b-1) for plain
SVM with ( in Table II), and row (b-2) for
enhanced SVM with , and (
in Table V). Section VI-C is the results for user relevance
feedback when the correct relevance information of the top 20

9In the experiment here, we already knew the relevant/irrelevant spoken seg-
ments for all of the queries considered, so we simply simulated the user-labelled
information to be the relevance information we had for the top spoken seg-
ments for all queries.
10The number of positive examples plus negative ones is .

segments in the first-pass returned list was given ( as
mentioned above). Row (c-1) is the upper bound assuming that
the ranking of all the segments including the top 20 already
seen by the user could be re-ranked. Although row (c-1) seems
very good, it is not realistic. Furthermore, since the top 20
segments with relevance information provided by the user were
used for training, the results were improved in any case because
all segments labelled relevant were ranked on the top, and all
labelled irrelevant at the bottom. This automatically improved
the MAP significantly. Even if those segments below the top
not browsed by the user were re-ranked in wrong directions, the
MAP degradation caused by the latter could be easily absorbed
by the increase in MAP due to the former. The results in row
(c-2) are realistic, since the ranking of the top 20 segments with
relevance information given by the users were frozen.
We observed here that the proposed approaches based on

PRF outperformed the user relevance feedback with the real-
istic frozen ranking assumption in terms of MAP in most cases
(rows (b-1), (b-2) vs (c-2)), even though the user did not need to
give any feedback during retrieval. In fact, because MAP values
were primarily dominated by the top several items, in the case
of user relevance feedback, the improvements in MAP scores
were relatively limited since the top 20 items were frozen. In
other words, although user relevance feedback may offer more
reliable examples for training, and thus better SVM model may
be learned, not too much space was left for MAP improvement.
In this respect, the proposed approaches with PRF provide an
effective way for improving the retrieval performance in terms
of MAP without enlisting the help from the user.
In Table VI, it is surprising to find that with the SD models

user relevance feedback with frozen ranking assumption was
even lower than the first-pass results (rows (c-2) vs (a) under
column SD). This implies that in this case the SVM model
learned from user relevance information was not generalizable
to the segments the user had not browsed. Since the SD model
was already well matched to the testing archive, some irrele-
vant segments within top 20 labelled by the user very possibly
had parts very close to the query phonetically or acoustically
but actually irrelevant. Therefore, it is in fact very difficult to
discriminate them from the relevant segments simply based on
acoustic information. If this is the case, the model thus trained
forced to discriminate the irrelevant segments from the relevant
ones may be over-fitted to the training data, and therefore not
generalizable to the segments not labelled by the users. This im-
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plies other features in addition to the acoustic information may
be needed. For the experiments here, on the other hand, PRF
offered some improvements over the first-pass results with the
SD models (rows (b-1), (b-2) vs (a) under column SD). Since in
PRF those segments having parts very close to the query phonet-
ically or acoustically were taken as positive examples, the SVM
model learned was better generalizable to other segments.

VII. CONCLUSION

In this paper, pseudo-relevance feedback is used to automati-
cally generate the training examples for training query-specific
SVM for each query, which is then used to further re-rank
the first-pass retrieved results. The feature vectors based on
acoustic information were defined and used in training the
SVM. The training examples are selected and weighted consid-
ering their reliability, and SVM is modified by rescaling slack
variables and/or margins to consider the examples’ weights.
The proposed approaches were tested with two different
sets of spoken archives with different speaking styles under
different recognition accuracies. The results indicated simply
taking top/bottom-ranked spoken segments as positive/negative
examples already significantly improved the retrieval perfor-
mance, and considering the weighted pseudo examples by
modified SVM was even more helpful. We further showed that
the proposed approach based on pseudo-relevance feedback
may be able to yield retrieval performance better than those
obtained in the scenario that correct information is provided by
users.
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