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摘要

一般的語音資訊檢索可以分成兩個階段。語音辨識引擎先將語料庫中的語音

資訊轉寫成文字並儲存起來；然後在檢索時，就直接把文字資訊檢索的方法套用

在這些辨識結果上。如果語音辨識引擎可以正確的將語音轉寫成文字，上述架構

當然可以得到良好的結果，然而在語音辨識系統正確率較差的情況下，這樣的架

構勢必會造成語音資訊檢索的效能大幅下降。本論文的核心思想就是要突破上述

架構中語音資訊檢索因完全仰賴語音辨識結果所造成的效能限制，這將會是語音

資訊檢索這個領域未來非常重要的發展方向。

本論文首先提出了以使用者相關回饋來重估測辨識系統的聲學模型參數的新

技術。有別於傳統的聲學模型訓練法，本論文以提升檢索效能做為聲學模型訓練

的目標，並將檢索系統以排序結果進行評估的特性在聲學模型訓練的過程中加以

考量。另一方面，本論文提出了以聲學特徵參數做為機器學習特徵的想法，這個

方法成功的被實作在虛擬回饋的架構下。其次，為了彌補在辨識過程中所漏失的

資訊，本論文提出以聲學特徵相似度來改進語音資訊檢索的想法，這個想法可以

被用在虛擬回饋以及圖學基礎之重排序上。最後，雖然今日語音檢索的研究仍集

中在提升口述語彙偵測的效能，但本論文進一步考慮了語意檢索，目標在找出語

意相關的語音文件，而不僅僅是找出包含查詢詞的文件。本文提出了以聲學特徵

相似度來提升詞頻估測準確率的方法，這個方法可以進一步提升語意檢索中的語

言檢索模型、文件擴展、查詢詞擴展等技術之效能。
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Abstract

Multimedia content over the Internet is very attractive, while the spoken part of such

content very often tells the core information. Therefore, spoken content retrieval will be

very important in helping users retrieve and browse efficiently across the huge qualities of

multimedia content in the future. There are usually two stages in typical spoken content

retrieval approaches. In the first stage, the audio content is recognized into text symbols

by an Automatic Speech Recognition (ASR) system based on a set of acoustic models and

language models. In the second stage, after the user enters a query, the retrieval engine

searches through the recognition output and returns to the user a list of relevant spoken

documents or segments. If the spoken content can be transcribed into text with very

high accuracy, the problem is naturally reduced to text information retrieval. However,

the inevitable high recognition error rates for spontaneous speech under a wide variety

of acoustic conditions and linguistic context make this never possible. In this thesis,

the above standard two-stage architecture is completely broken, and the two stages of

recognition and retrieval are mixed up and considered as a whole. A set of approaches

beyond retrieving over recognition output has been developed here. This idea is very

helpful for spoken content retrieval, and may become one of the main future directions in

this area.

To consider the two stages of recognition and retrieval as a whole, it is proposed to

adjust the acoustic model parameters borrowing the techniques of discriminative training

but based on user relevance feedback. The problem of retrieval oriented acoustic model

re-estimation is different from the conventional acoustic model training approaches for

speech recognition in at least two ways:
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1. The model training information includes only whether a spoken segment is relevant

to a query or not; it does not include the transcription of any utterance.

2. The goal is to improve retrieval performance rather than recognition accuracy.

A set of objective functions for retrieval oriented acoustic model re-estimation is proposed

to take the properties of retrieval into consideration.

There have been some previous works in spoken content retrieval taking advantage

of the discriminative capability of machine learning methods. Different from the previous

works that derive information from recognition output as features, acoustic vectors such

as MFCC are taken as the features for discriminating relevant and irrelevant segments,

and they are successfully applied on the scenario of Pseudo Relevance Feedback (PRF).

The recognition process can be considered as “quantization”, in which the acoustic

vector sequences are quantized into word symbols. Because different vector sequences

may be quantized into the same symbol, much of the information in the spoken content

may be lost in the stage of speech recognition. Information directly from the acoustic

vector space is considered to compensate for the recognition output in this thesis. This

is realized by either PRF or a graph-based re-ranking approach considering the similarity

structure among all the segments retrieved. This approach is successfully applied on not

only word-based retrieval system but also subword-based system, and these approaches

improve the results of Out-of-Vocabulary (OOV) queries as well.

The task of Spoken Term Detection (STD) is mainly considered in this thesis, for

which the goal is simply returning spoken segments that contain the query terms. Al-

though most works in spoken content retrieval nowadays continue to focus on STD, in

this thesis a more general task is also considered: to retrieve the spoken documents se-
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mantically related to the queries, no matter the query terms are included in the spoken

documents or not. Taking ASR transcriptions as text, the techniques such as latent se-

mantic analysis or query expansion developed for text-based information retrieval can be

directly applied for this task. However, the inevitable recognition errors in ASR tran-

scriptions degrade the performance of these techniques. To have more robust semantic

retrieval of spoken documents, the expected term frequencies derived from the lattices are

enhanced by acoustic similarity with a graph-based approach. The enhanced term fre-

quencies improve the performance of language modelling retrieval approach, document

expansion techniques based on latent semantic analysis, and query expansion methods

considering both words and latent topic information.
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Chapter 1 Introduction

1.1 Spoken Content Retrieval

Ever increasing computing power and connectivity bandwidth together with falling stor-

age costs result in an overwhelming amount of data of various types being produced,

exchanged and stored. Consequently, retrieval has emerged as a key application as more

and more data are being saved. Spoken content retrieval did not receive much attention

in the past due to the fact that large collections of spoken material were not available be-

cause of storage constraints. However, as web sites providing multimedia are becoming

more and more popular, this research topic has attracted lots of attentions now. Since the

subjects, topics, and core concepts of such multimedia content can very often be identi-

fied based on the speech information within the audio part of the content, spoken content

retrieval will be very important in helping users retrieve and browse efficiently across the

huge qualities of multimedia content in the future [1]. The basic scenario for spoken con-

tent retrieval is that the user enters a query in text form into the retrieval system, and the

system returns a list of rank-ordered spoken documents or spoken segments. Spoken seg-

ments are the portions of longer spoken documents, which can be as short as individual

spoken utterances. Without specially mentioned, we assume the queries for spoken con-

tent retrieval are in text form in this thesis. Although spoken queries may be used instead

of text in some applications, it is out of the scope of this thesis.

An intuitive but widely applied approach for spoken content retrieval is “use an au-

tomatic speech recognition (ASR) system to transcribe the spoken content first, and then

apply state-of-the-art text-based retrieval approaches on the transcriptions”. Therefore,
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there are usually two stages in typical spoken content retrieval approaches [2]. In the first

stage, the audio content is recognized into word sequences by ASR system based on a set

of acoustic models and language models. In the second stage, after the user enters a query,

the retrieval engine searches through the recognition output and returns to the user a list

of relevant spoken documents or segments. This strategy works reasonably well when the

speech recognition output is mostly correct.

Actually, the above approach made a success in Text REtrieval Conference (TREC)

Spoken Document Retrieval (SDR) track and achieved very similar accuracy perfor-

mances compared with human transcripts. Therefore, people considered the SDR problem

as a “solved” problem at the time [3]. However, the SDR track for TREC was conducted

on broadcast news with relatively low recognition error rates. When human extended

spoken content retrieval to more challenging task such as telephone conversations, meet-

ings, or lecture courses whose word error rates are sometimes higher than 50%, the above

strategy was not sufficient to build a retrieval system with reasonable performance.

Decreasing the word error rates of the ASR modules inherent in the spoken content

retrieval systems certainly improves the retrieval performance. Whenever the ASR mod-

ule is able to correctly transcribe any audio content into its corresponding word strings,

spoken content retrieval would be reduced to text-based information retrieval. However,

it is hard to imagine that ASR system can be perfect in the near future. Although lots of

efforts have been put into the research for ASR, it is still very challenging for the state-

of-the-art ASR systems to perfectly recognize audio content, in particular those from the

Internet with widely variant acoustic and linguistic conditions.

A widely considered approach is indexing the multiple hypotheses of spoken con-
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tent. It has been proved to be helpful for dealing spoken archive with high recognition

errors. It has been shown that retrieval based on multiple hypotheses offered over 30% im-

provements of Maximum F-measure over one-best transcription for a term detection task

in broadcast news, switchboard and teleconferences [4]. However, for poor recognition

accuracies, even if the correct word hypotheses can be included in the lattice, many incor-

rect noisy hypotheses disturb the results. Therefore, the performance of spoken content

retrieval is still inevitably dominated by ASR performance based on the lattices.

How about break through the typical two-stage architecture in spoken content re-

trieval? Since the input query is in text form, and the target spoken archive is audio files,

to bridge the gap between text and audio, the recognition transforming speech into text

may be indispensable. However, because the recognition output can only be regarded as

a very rough approximation for the spoken content especially when recognition is poor,

the retrieval techniques solely based on the recognition output are not able to take the

advantage of the possibly useful information lost during the recognition. Therefore, it is

certainly beneficial to regard the spoken content as “spoken content” itself in the task of

spoken content retrieval. In this thesis, a set of novel retrieval approaches beyond recog-

nition output are proposed following the above philosophy, which consider the charac-

teristics of the spoken content in the retrieval process. These methods are believed to

surmount the limitation from the imperfect ASR system to some extent.

Two subtasks of spoken content retrieval are considered in this thesis. The first one

is Spoken Term Detection, for which the goal is simply returning spoken segments that

contain the query terms. The second one is Semantic Retrieval of Spoken Content, in

which the retrieval system retrieves the spoken documents semantically related to the
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queries (no matter the query terms are included in the spoken documents or not).

1.1.1 Spoken Term Detection

The recognition and retrieval system should be considered as a whole. Since the retrieval

process is mostly based on the recognition output like transcriptions or lattices, the pa-

rameters of the recognition models may influence the performance of the whole retrieval

system. Hence, better acoustic models conceivably improve the retrieval performance. To

obtain better acoustic models, conventionally a set of utterances with their manual tran-

scriptions are needed, but here the better acoustic model parameters are estimated based

on user relevance feedback. The relevance feedback oriented acoustic model estimation

aims at improving the retrieval performance instead of recognition accuracies, and a set

of objective functions for relevance feedback is proposed, which take the properties for

retrieval into consideration.

It has been known for long that the retrieval task can be considered as binary clas-

sification, and the binary classifiers trained from the data obtained by relevance feedback

via the machine learning methods can be used for identifying the relevance of an object

with respect to a specific query. The same approach can be naturally applied on spoken

content retrieval. However, it is unclear which kinds of information in the spoken content

should be represented as features for training the models accurately discriminating the

relevant objects from the irrelevant ones. The features directly derived from the acoustic

vector sequences ( such as Mel-Frequency Cepstral Coefficients (MFCC) ) of the spoken

content is found to be very helpful in this thesis. This approach is successfully applied on

pseudo-relevance feedback, and thus the system performance is improved automatically
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without involving any user.

Since the acoustic vector sequences representing different occurrences of the same

term should be similar in some way, while very different vector sequences very possibly

imply different terms, if some audio examples for the desired query are available, it is

possible to judge the correctness of the retrieved spoken objects based on the similarity

of the acoustic vector sequences of these objects to those of the given examples. Those

examples can be obtained by pseudo-relevance feedback. This idea can be moved one step

forward via considering the relevance of the spoken content in a more global way with a

graph. Since the acoustic similarity is completely independent to the recognition output,

the methods developed based on acoustic similarities may be robust to the recognition

errors. These example-based approaches are verified not only useful for IV queries but

also OOV queries. Moreover, it is also successfully applied on the spoken archive with

many different speakers.

1.1.2 Semantic Retrieval of Spoken Content

Most of researches on spoken content retrieval nowadays focus on spoken term detec-

tion, but this is insufficient because users naturally prefer that the technologies can return

all the objects that the user really wants, regardless of whether the query terms are con-

tained or not, so semantic retrieval of spoken content is also considered in this thesis.

The Concept Matching techniques [1] which have been widely studied in text-based in-

formation retrieval are desired in this task. Taking ASR transcriptions as pure text, the

concept matching techniques developed for text-based information retrieval can be di-

rectly applied on semantic retrieval of spoken content. However, since these techniques
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were developed for text without errors, the inevitable recognition errors in ASR transcrip-

tions definitely degrade the performance, even though the retrieval is based on the lattices.

To tackle this problem, instead of simply estimating the term distributions in the spoken

documents from the lattices, they are refined based on the concept that similar terms may

exhibit similar acoustic vector sequences. This method is able to enhance the techniques

developed for text-based retrieval including query expansion and document expansion.

1.2 Organization of the Thesis

Part I of this thesis consisting of Chapter 1 to 3 advocates for the introduction and review

of background knowledge. In Chapter 2, general issues related to spoken content retrieval

are briefly introduced, and an overview for the scenarios of relevance feedback is given

in Chapter 3. Part II of this thesis introduces the new techniques proposed. Chapter

4 to 6 are for spoken term detection, in which the objects to be retrieved are spoken

segments, and a spoken segment is taken as relevant if it includes the query term. In

chapter 4, a set of relevance feedback oriented acoustic model re-estimation methods are

proposed. In chapter 5, SVM models are trained for identifying the segments’ relevance

from acoustic vectors in the scenario of pseudo-relevance feedback. In Chapter 6, a set of

example-based methods directly employing the acoustic similarities between the spoken

segments are proposed. The relevance of a spoken segment can be either judged by some

audio examples from pseudo-relevance feedback, or determined by the similarity structure

for the retrieved segments with a graph. The Chapter 7 of this thesis considers a more

general task for spoken content retrieval, in which the retrieval system retrieves the spoken

documents semantically related to the queries, and the term distributions in the spoken
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documents are refined based on the concept of acoustic vector similarity to enhance the

text-based techniques. Finally, the conclusion and future work are given in Chapter 8.
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Chapter 2 Spoken Content Retrieval

In this chapter, a brief introduction about spoken content retrieval is given. For the inter-

ested readers, please refer to the references [1,2,5,6].

2.1 Basic Idea

The basic idea of information retrieval is after a user enters a query Q, the retrieval

system returns a list of objects x ranked according to their relevance with respect to

the query. The definition for the relevance of an object is task-dependent or even user-

dependent 1. The relevance of each object x with respect to a query Q is evaluated by a

relevance score function S(Q, x) in the retrieval system. This relevance score function

S(Q, x) can be learned from a set of training data, or designed by the system designers

heuristically. After a queryQ is requested from the user, the system computes S(Q, x) for

each object x in the database and returns a list of objects sorting by S(Q, x) to the user.

For spoken content retrieval discussed in this thesis, the query Q is a string of words, and

the objects x to be returned are spoken documents or segments.

Most of the following discussions in this chapter are for Spoken Term Detection

(STD), in which spoken segments are objects to be retrieved, and a spoken segment x is

relevant if it includes the query term. These discussions may be generalized to other tasks

in spoken content retrieval as well. The STD task is trivial for one-best transcription.

Since the user wants to find the spoken segments containing the query term, the STD

1Relevance can be roughly understood as the preference for the user.
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system can simply search through the spoken segments in the data collection, and return

the spoken segments which contain the query term in their transcriptions. However, the

unavoidable recognition errors usually lead to poor performance for the above approach.

A more robust approach is computing the expected query term frequency E[Q|x] for each

spoken segment x. The expected term frequency E[Q|x] or its variants are widely used in

the STD task as the relevance score function S(Q, x) [7–12]. In other words, after a query

term Q is entered, the system ranks the segments x according to E[Q|x]. Theoretically,

E[Q|x] is defined as

E[Q|x] =
∑

all possible word sequences u

N(u,Q)P (u|x), (2.1)

where N(u,Q) is the occurrence count of query Q in u, and P (u|x) is the posterior

probability of a word sequence u given the spoken segment x based on a set of acoustic

and language models. It seems impossible to compute the posterior probabilities for all

possible word sequences, but (2.1) can be approximated by only considering the word

sequences u included in the lattice structure introduced in the next subsection.

2.2 Lattices

Given an utterance, the ASR system can not only return the word sequence with the

largest posterior probability as the transcription, but also return all of the word sequences

whose probabilities are larger than a threshold based on a set of intrinsic acoustic and

language models. Those word sequences are usually merged into a lattice structure as

Fig 2.1a, in which four word sequences, {W1,W2}, {W3,W4,W5}, {W6,W8,W9,W10}

and {W7,W8,W9,W10}, are embedded in the lattice. Even though the transcription is not

10



(a) Lattice

(b) Confusion Network (CN)

(c) Position Specific Posterior Lattice (PSPL)

Figure 2.1: Lattice and sausage-like structures.
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correct, it is often possible to find the correct word sequence in the lattice.

Suppose each spoken segment x is first transcribed into a lattice W (x), then (2.1)

can be approximated by only considering the word sequences in the lattice as

E[Q|x] =
∑

u∈W (x)

N(u,Q)P (u|x), (2.2)

where u is an allowed word sequence in the latticeW (x),N(u,Q) is the occurrence count

of query Q in u, and

P (u|x) =
∑

u∈W (x)

N(u,Q)
P (x|u)P (u)∑

u∈W (x) P (x|u)P (u)
, (2.3)

where P (x|u) is the likelihood for observation sequence of segment x given the word

sequence u based on the acoustic model set, and P (u) is the prior probability of u from

the language model.

The arcs in the lattices are usually gathered into clusters to form the sausage-like

structures as Fig. 2.1b and Fig. 2.1c to make the indexing task easier and reduce memory

requirements. The standard text indexers can be directly used for indexing these struc-

tures. In addition, because the arcs in the same cluster with the same word hypotheses

would be merged, the memory used for the sausage-like structures is less than the lat-

tices [10]. Examples of such sausage-like lattice-based structures include Confusion Net-

works (CN) [13,14], Position Specific Posterior Lattices (PSPL) [11,15,16], Time Merged

Indexing (TMI) [17], and Time-Anchored Lattice Expansion (TALE) [18]. Fig 2.1b is an

example of CN structure for the lattice in Fig 2.1a. CN clusters the arcs based on their

time spans, and the orders of the arcs in the original lattice are preserved. However, some

word sequences included in the original lattice are discarded. For example, the word se-

quence {W3,W4,W5} in Fig 2.1a can not be found in the CN structure in Fig 2.1b. On
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the other hand, PSPL in Fig 2.1c not only preserves all the word sequences in the original

lattice, but also generates some word sequences not in the original lattice. For instance,

the word sequence {W1,W2,W5,W10} in the PSPL structure in Fig 2.1c does not exist in

Fig 2.1a. The new word sequences generated by PSPL sometimes enhance the retrieval

process [17,18]. For more comparison of PSPL and CN, the reader is referred to [19].

Indexing can also be implemented by representing the lattices as weighted automata

and building an index for all of the possible sub-strings contained in the lattices [20].

Under this general framework, the index itself is a weighted finite state transducer (WFST)

whose inputs are word strings, and the outputs are a list of spoken segments and their

relevance scores.

2.3 Out-of-Vocabulary Problem and Subword-based In-

dexing

The vocabulary is predetermined before the speech is passed to the ASR system for recog-

nition. If a word spoken in the audio is not present in the vocabulary of the recognizer,

the recognition system can never correctly recognize that word. Therefore, if a query is

out-of-vocabulary (OOV), the retrieval system cannot find the segments containing the

query even the retrieval process is conduced on the lattices. Unfortunately, since the less

common and topic specific words form the great part of the queries, the percentage of

OOV queries can be higher than 15% on a real system [21].

Some people have suggested that the OOV problem can be tackled by building an

ASR system generating transcriptions or lattices based on subword units [22–24]. At
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the retrieval time, when an OOV query is encountered, the query is converted into a

sequence of subword units, and then the system matches the subword unit sequence in

the subword-based recognition output. Although this approach conceivably eliminates

the OOV problem, the post-recognition indexing and retrieval may become more com-

plex under this approach [25]. For example, grapheme-to-phoneme technique is usually

needed to transform a word into a subword sequence [26,27].

A wide range of subword units can be considered, which can be roughly divided into

two categories, linguistically motivated units as well as data-driven units. The linguis-

tically motivated units include syllable [19,22], phoneme [28], or subphone units [29].

Linguistically motivated units require knowledge about specific language and may be

costly to extract for some languages. Data driven units are derived by utilizing statisti-

cal and information theoretic principles. Phone multigrams [30] are non-overlapping and

variable-length phone sub-sequences with predefined maximum length. These are found

using an unsupervised iterative algorithm maximizing the likelihood of the training data

under the multigram language models. Similarly, particles [31] are selected in a greedy

fashion so as to maximize the leave-one-out likelihood of a bigram language model. Sta-

tistical morphs [32,33] are based on the minimum description length (MDL) principle,

which means that in addition to the corpus representation given by the data likelihood,

the lexicon representation is also taken into account. Graphemes (or letters) have also

been proposed as subword units for spoken content retrieval [34]. In such system, the

grapheme-to-phoneme module is not needed.

Word-based indexing and subword-based indexing have different strengths and weak-

ness. Word-based approaches suffer from OOV words and as a result have lower recall.
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Subword-based approaches result in higher recall at the potential expense of lower preci-

sion. Hence a combination of different units may yield the best performance. One way to

achieve this is using both word and subword indices for retrieval [22,35,36]. For example,

when a query is entered, the system first individually generates the results based on word

and subword indices, and then combines the results from different indices via simply inte-

grating their relevance scores. This approach requires determining some parameters such

as interpolation weights, which can be learned by the learning-to-rank techniques from a

set of training queries [37].

2.4 Query-by-Example

In query-by-example [38–43], instead of providing a query in text form, the user provides

one or more audio examples of the query. These audio examples could be found by the

user in a data pool, or even directly spoken by the user.

Although query-by-example has become a topic of recent interest, it has its roots

in the early template-based approaches to speech recognition. Before statistical methods

become the predominant approaches to speech recognition, early speech recognizers of-

ten employed Dynamic Time Warning (DTW) search mechanisms which relied on direct

acoustic similarity measures between stored templates and test data. Although acoustic

similarity measures often suffer from mismatches due to speaker, channel, or environ-

ments, direct similarity measures were recently used with some success for query-by-

example [44]. Alternatively, some recent works has examined to use phone posterior-

gram or Guassian posteriorgram for template matching [39,40]. Statistical models such

as HMM are helpful to query-by-example [45,46].
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2.5 Evaluation Metrics

Precision, Recall and F-measure

Precision, Recall and F-measure are relatively familiar metrics. Precision is the fraction

of relevant objects in the retrieved objects, and recall is the fraction of relevant objects

retrieved. F-measure is

F −measure =
2× Precision×Recall
Precision+Recall

(2.4)

Actual Term Weighted Value (ATWV)

Actual Term Weighted Value (ATWV) is defined in the NIST STD 2006 Evaluation

Plan [47] which is only used in STD.

ATWV = 1− 1

|Q|
∑

all queries Q

{Pmiss(Q) + βPFA(Q)}, (2.5)

where β is a user-defined parameter (set to 1000 in the 2006 NIST STD evaluation), and

|Q| is the number of testing queries.

Pmiss(Q) = 1− C(Q)

R(Q)
, PFA(Q) =

A(Q)− C(Q)

T − C(Q)
, (2.6)

with T being the total duration of the speech in the collection. Here R(Q) is the total

number of times the specific query Q actually appears in the audio collection, A(Q) is the

number of hits returned when query Q is requested, and C(Q) is the number of hits that

are actually correct.

The term “actual” in ATWV refers that the system should automatically decide a

threshold which determines whether to return a hit or not. If the system tunes the threshold

to maximize (2.5), then we obtain Maximum Term-Weighted Value (MTWV). Moreover,
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if we weight each query by its occurrence times in the audio collections (the queries

appear frequently in the corpus may have larger probabilities to be requested), then we

have Actual Occurrence-Weighted Value.

Precision@N, R-precision, Mean Average Precision (MAP)

The evaluation metrics just introduced do not consider the ranking of the retrieved objects.

Here in this subsection some evaluation metrics for the ranking results are introduced.

Precision@N is the precision measure of the top N returned objects. R-precision is

similar to precision@N, except that N varies for each given query Q and is set to the total

number of relevant objects for Q in the collection.

Mean Average Precision (MAP) [48] is the mean of the Average Precision over the

testing queries. The average precision for the retrieval result of a query is defined as (2.7),

Average Precision =

∑n
k=1 precision(k)rel(k)

R
, (2.7)

where R is the number of relevant objects for the query, n is the total number of objects

in the ranking list, precision(k) is the precision measure of the top k objects in the list

(that is, Precision@k), and rel(k) is an indicator function which equals one if the item at

rank k is a relevant object, and zero otherwise. The value of MAP can also be understood

as the area under the precision-recall curve. Fig 2.2 is an example for demonstrating the

computation of average precision. Suppose the ranking list in the middle of Fig 2.2 is

returned by the retrieval system, in which blue balls represent relevant objects, and the

red ones are irrelevant objects. Since there are four relevant objects with precisions 1.00,

1.00, 0.75, 0.50 respectively in the ranking list, average precision of the ranking list is

Average Precision =
1

4
(1.00 + 1.00 + 0.75 + 0.50) = 0.8125 (2.8)
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Figure 2.2: Example demonstrating the computation of Average Precision (AP).

In this thesis, MAP is used for evaluating the performance of the results in all

of the experiments.

2.6 Optimizing Evaluation Performance

One recent trend in spoken content retrieval has focused on efforts to directly optimize

systems to their evaluation metrics. A linear model whose parameters are learned to di-

rectly maximize figure of merit using gradient descent algorithm was introduced to trans-

form the phone posterior probability output for STD [49]. STD evaluation metrics have

also been used recently to optimize the weights on the indexing features (terms in a query)

to reflect their importance for different contexts in which the query term occurs [50]. User

feedback [51] is also integrated into a discriminative training process in order to optimize

retrieval performance. The posterior probabilities derived from lattices are enhanced to

minimize a loss function that boosts the relevance scores of the correctly retrieved seg-

ments over the competing incorrect ones via user feedback obtained from initial retrieved
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results.

2.7 Machine Learning Methods

There have been some works [8,52–55] taking advantage of the discriminative capability

of machine learning methods such as support vector machines (SVM) or multi-layer per-

ceptrons (MLP) to facilitate STD. In those works, a set of training data (a set of queries

and associated relevant/irrelevant segments) is assumed available. Then SVM or MLP

is used for training a model which identifying if a spoken segment contains the entered

query term or not. In order to have these machine learning classifiers properly work for

the target spoken archive, the training data must be reasonably matched to the target spo-

ken archive, but such data is usually not available or difficult to collect. In fact, in reality

it is very possible that the spoken archive includes content produced in different parts of

the world by different speakers on different domains under different acoustic conditions.

This makes collecting a reasonably good training set very difficult. Moreover, since the

characteristics of the queries are usually very diverse, a simple classifier optimized for

many different training queries may not be able to offer the best solution for the high

variety of many different testing queries.

2.8 Benchmark Data Sets

TREC SDR

The TREC SDR evaluations focused on a corpus of broadcast news speech from various

sources including CNN, ABC, PRI and Voice of America. About 550 hours of speech
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were segmented manually into 21574 stories. ASR systems tuned to the broadcast news

domain had 15-20% word error rates, and retrieval based on the ASR output achieved

very similar performances compared with approximate manual transcripts. As a result,

NIST’s final report on the TREC SDR evaluations declared the research effort “a success

story” [3].

NIST STD

The National Institute of Standards and Technology (NIST) STD 2006 Evaluations [47]

introduced the task of locating the exact occurrence of a query in large heterogeneous

speech archives including broadcast news, telephone conversations and meetings. The

corpus used for the evaluation included Arabic, Mandarin Chinese and English, and at-

tracted many different sites [7–9].

NTCIR SDR

Recently NTCIR has a spoken content retrieval track [56]. There are two subtasks in this

track, STD and Spoken Document Retrieval (SDR). Both of the subtasks target to retrieve

academic and simulated lectures of the Corpus of Spontaneous Japanese (CSJ), which

includes 2702 lectures (about 600 hours). The STD task is to find all spoken segments2

that include a specified query term in CSJ. For SDR, the retrieval system should find the

passages including the relevant information related to the query.

2They are called Inter-Pausal Unit (IPU) in the task description.
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2.9 Spoken Content Retrieval in the Real World

While this chapter has largely focused on the technologies about spoken content retrieval,

it is important not to overlook its applications in the real world. In this section, some well-

known on-line systems based on the techniques of spoken content retrieval are introduced.

SpeechBot

SpeechBot [57] was a program started by HP Labs in 1999 to index and make search-

able audio and video programs using speech recognition software. The service once had

15,321 hours of content available for search before SpeechBot was shut down after HP

closed their Cambridge research lab.

SpeechFind

SpeechFind [58] system is a spoken document retrieval system currently serving as the

search engine for the National Gallery of the Spoken Word (NGSW) [59]. The speech

corpus from NGSW covers one of the largest ranges of a audio material available today

up to 60,000 hours from the last 110 years. The audio content includes a diverse range

of vocabulary over the time periods. Many of these include various kinds of acoustic

conditions (e.g., background noise, reverberation, channels, recording media, speaking

style, etc.)

PodCastle

PodCastle [60,61] is a service that enables the searching of speech data such as podcasts,

individual audio or video files on the web, and video clips on video sharing services (Nico
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Figure 2.3: The error correction interface of Podcastle.

Nico Douga, YouTube, and Ustream). The most special part for PodCastle is it allows the

users accessing the PodCastle service to correct speech recognition errors, and the system

uses the correction information for recognition model re-estimation.

GAudi

In the 2008 presidential election race in the United States, the prospective candidates

made extensive use of YouTube to post video material. Google developed a scalable sys-

tem, GAudi (short for Google Audio Indexing), which transcribes this material and makes

the content searchable (by indexing the meta-data and transcripts of the videos) [62].

GAudi was once available on the Web at labs.google.com [63].

MIT Lecture Browser

MIT has released a new search engine which lets users search MIT audio and video lec-

tures [64]. The browser enables the user to type a text query and receive a list of hits

contained within the indexed lectures. Queries can be constrained by allowing users to

specify a topic category from a pull-down menu before searching. Also, the speech recog-
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nition output could be manually corrected to improve the transcriptions [65,66].

NTU Virtual Instructor

NTU Virtual Instructor [67,68] manages lecture courses offered in National Taiwan Uni-

versity (NTU). Its functionalities include spoken content retrieval, topic segmentation, key

term extraction, hierarchical summarization, semantic structuring for the courses, and key

term graph construction. The user can ask questions to the system and learn what he needs

in his own way.

Fig. 2.4 is the retrieval interface of NTU Virtual Instructor. After the user enters a

text query (which is “Viterbi” in Fig. 2.4), a list of relevant spoken segments is retrieved

and displayed with the Play bottoms. The user can select to only listen to the individual

segments or the whole classes containing the retrieved segments. Since most courses

were produced by the instructors primarily in Mandarin Chinese but embedded with some

English terminologies, the system supports both Chinese and English queries. Moreover,

the retrieval module in NTU Virtual Instructor operates on the lattice-based indices.
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Figure 2.4: A screen shot of NTU Virtual Instructor.
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Chapter 3 Relevance Feedback

Since the approaches proposed in this thesis are all based on the scenarios of relevance

feedback, in this chapter we introduce the relevance feedback scenarios considered in this

thesis. Relevance feedback is a mature technique for text information retrieval [69], and

it has been applied on numerous popular text retrieval models such as the vector space

model [70], the probability model [71], and the language model [72]. It has been used ex-

tensively in different retrieval domains such as image [73–78] and video retrieval [79–81];

however, it has not yet been fully leveraged for speech information retrieval. Relevance

feedback can also be used with the learning-to-rank techniques. Learn-to-rank is a set

of techniques learning retrieval models for object ranking based on a set of training data

usually labelled by the experts. However, since hiring experts for data labelling is very

expensive, relevance feedback can be served as the approach for training data collec-

tion [82,83].

As mentioned in Section 2.1, when a query Q is entered, the spoken content retrieval

system ranks the returned objects x based on the values of a relevance score function

S(Q, x) evaluated for x with respect to Q. The basic idea for relevance feedback is to

modify the original relevance score function S(Q, x) to yield a better function S ′(Q, x)

via relevance information obtained from the feedback loop. There are in general two

different scenarios of relevance feedback: user relevance feedback and pseudo-relevance

feedback. These are further discussed in the following.
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3.1 User Relevance Feedback

As implied by the name, in the scenario of user relevance feedback, the users provide

relevance information for improving the system performance at the search phase. It has

been known for long that involving the users into the search process by relevance feedback

is an effective way of improving the retrieval performance. During the search process, the

user provides information about relevant segments as positive examples and irrelevant

segments as negative examples with respect to the query entered. Thus the system learns

from these examples to yield improved performance.

Although in this scenario the relevance information comes from the user, implicit

feedback [84–91] has been widely used in real systems because most users are reluctant

to give relevance feedback explicitly. Implicit feedback means the system analyses the

user’s behaviour on-line to get the feedback information; the user does not know he is

in a feedback procedure. One representative is click-through data [82,85]. Web search

engine like Google usually returns not only a list of web page links but also the abstracts

of the pages. Because a user can decide if the web pages retrieved are relevant via viewing

the abstracts, it may be conceivable to assume that the user only clicks on the web pages

considered relevant. Thus, if a user clicks the the third link on the returned list without

clicking on the first two, it is reasonable for the system to assume that the third web

page is relevant and that the first two are irrelevant. For spoken content retrieval, we

can assume that the transcription is displayed beside each spoken document or segment

on the returned list given by the retrieval system, and then the user is able to judge if

the spoken document or segment is what he wants based on the automatic transcription

(Human comprehension of error corrupted transcripts is generally not degraded for low
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enough error rates, and the identification of the general topic is possible even for higher

error rates [92]).

There are two scenarios, short- and long-term context, for user relevance feedback [93].

For short-term context user relevance feedback, the retrieval system obtains only the rel-

evance information for the single query a user just entered, and the relevance feedback

process aims at only improving the retrieval performance for exactly the current entered

query. For example, a user is looking for relevant objects about the query “White House”.

During his search process, if the system is given some relevant and irrelevant objects with

respect to the query “White House”, then the retrieval system adjusts its relevance score

function to improve the retrieval results for the query “White House” based on the rele-

vance information. For long-term context user relevance feedback, the historical record

of relevance information for many different queries is collectively used to improve the re-

trieval performance over all other queries. For instance, some users have looked through

the results returned by the system with respect to the queries “US”, “Amarican”, “Obama”

and so on, and they gave the system some feedback during their search processes. Those

feedback information was recorded and used to generally improve the system perfor-

mance for all the queries. Therefore, the retrieval results for the query “White House”

may also be improved even if no user gave feedback with respect to “White House” be-

fore. Those two scenarios are further discussed below.

3.1.1 Short-term Context User Relevance Feedback

Fig. 3.1 (a) shows short-term context user relevance feedback for spoken content retrieval.

The user browses the retrieved list on the left side ranked by the original score S(Q, x).
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If the user gives the relevance information of the top N spoken segments on the list to

the system 1, for example, in Fig. 3.1 (a) he selects items 1 and 3 as relevant but item 2

as irrelevant, those labelled segments are used to obtain the new score S ′(Q, x), which is

used to re-rank the spoken segments below the top N . Note that the order of these top N

labelled spoken segments should be frozen [38,69]. In practice, the returned results are

usually divided into pages. When the user clicks through the first page, he actually gives

relevance information implicitly to the system. When he starts to browse the second page,

the system has already changed the ranking order of the spoken segments after the first

page based on the new score which includes the relevance information from the first page.

In this case, the top N spoken segments with user relevance information are the spoken

segments in the first page, and because the user has already seen them, re-ranking their

order is meaningless, and thus they should be frozen.

3.1.2 Long-term Context User Relevance Feedback

Fig. 3.1 (b) shows long-term context user relevance feedback for spoken content retrieval.

Historical relevance information for many queries (training queries such as Q1, Q2, and

Q3 in Fig. 3.1 (b)) entered by one or more users is collectively used to train the new score,

S ′(Q, x), which is used to rank the spoken segments corresponding to the new query Q′.

1Because the user usually browses the retrieved objects based on the ranking orders provided by the

system, the assumption that the user labels the top N objects on the returned list is quite common in the

literatures [38,94–98].
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3.2 Pseudo-Relevance Feedback

Pseudo-relevance feedback (PRF), also known as blind relevance feedback, has been

widely used for long in information retrieval to obtain relevance information for each

query without actually involving any action from the user. It has been successfully ap-

plied on different retrieval domains like text [99–107], image [108] and video [79,109].

Conventionally, PRF assumes that a small number of top-ranked objects in the first-pass

retrieved results are relevant (or “pseudo-relevant”), and sometimes in addition some

bottom-ranked objects are irrelevant (or “pseudo-irrelevant”), and these pseudo-relevant

(and -irrelevant) objects can then be taken as extra information to improve the retrieval

results.

Fig. 3.1 (c) shows pseudo-relevance feedback for spoken content retrieval. The sys-

tem simply assumes the top three spoken segments in the first-pass returned list ranked

by S(Q, x) are relevant without any user input; these pseudo-relevance segments are then

used as positive examples to obtain S ′(Q, x) as in the short-term context. All of the re-

turned spoken segments are then re-ranked based on this new score. Note that no spoken

segments’ orders should be frozen here because no spoken segment has been labeled by

the user. In fact, what is presented to the user is the re-ranked list of spoken segments

after pseudo-relevance feedback.
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(a) short-term context user relevance feedback

(b) long-term context user relevance feedback

(c) pseudo-relevance feedback

Figure 3.1: Different relevance feedback scenarios for spoken content retrieval. The orig-

inal score S(Q, x) before relevance feedback is changed to S ′(Q, x) after relevance feed-

back. Spoken segments with T, F and P are respectively the user-labeled relevant and

irrelevant segments, and those assumed relevant by the system.
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Part II

Improved Spoken Content Retrieval
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Chapter 4 Retrieval Oriented Acoustic

Model Re-estimation by Relevance Feedback

The goal for the Spoken Term Detection (STD) system is to return a list of spoken seg-

ments which include the query term the user enters. The segments include the query

term are considered as “relevant” in this task. In a typical STD system, the target spoken

archive is first segmented into spoken segments, and then each spoken segment x is tran-

scribed into a lattice. After the user enters a text query Q, the retrieval engine evaluates

the degree of relevance for each segment x with respect to the query Q, represented by

relevance score function S(Q, x) which is usually derived from the lattice of x. Then the

system returns the segments whose S(Q, x) are larger than a threshold. and ranked the

results according to S(Q, x).

As mentioned in Chapter 1, people usually consider recognition and retrieval as two

cascaded independent modules for STD, and the retrieval techniques were usually as-

sumed to be applied on top of some ASR output. In this chapter, I propose a new frame-

work: to integrate the two parts into a single task. This can be achieved by adjusting the

acoustic model parameters borrowing the techniques of discriminative training based on

user relevance feedback. The modified acoustic models then give updated relevance score

functions for STD.
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4.1 Introduction

The relevance score function S(Q, x) is typically lattice-derived and depends on the

acoustic model parameters θ used for generating the lattices thereby. Therefore, the com-

plete relevance score function S(Q, x) should include the acoustic model parameters θ:

S(Q, x|θ) =

∑
u∈W (x) Pθ(x|u)P (u)N(u,Q)∑

u∈W (x) Pθ(x|u)P (u)
, (4.1)

whereW (x) is the lattice of segment x, u is an allowed word sequence in the latticeW (x),

Pθ(x|u) is the likelihood for observation sequence x given the word sequence u based on

the acoustic model set θ, P (u) is the prior probability of u from the language model, and

N(u,Q) is the occurrence count of query Q in u. Since the denominator in (4.1) is the

sum of the likelihoods of all word sequences u in the lattice, and the numerator of (4.1) is

the same but weighted by the occurrence count of query Q, equation (4.1) is the expected

occurrence count of query Q in lattice W (x) based on the set of acoustic models θ.

If the user gives some feedback to the system, for example he/she selects items 1 and

3 shown in Fig. 4.1 as relevant but item 2 as irrelevant, a new set of acoustic models θ∗

can then be estimated based on the feedback and so on. Thus, because the relevance score

function in (4.1) depends on the acoustic model parameters, it is changed into S(Q, x|θ∗)

accordingly, which in turn yields new ranking results. This technique can be very helpful

for a search engine aiming at indexing spoken segments available on many web sites over

the Internet with various acoustic/linguistic conditions, for which adapting the acous-

tic/language models for the various acoustic/linguistic conditions is almost impossible.

With this approach proposed here, acoustic models can be adjusted based on user rele-

vance feedback. This can be an important step towards a more robust spoken content

retrieval technologies.
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Some research works have in fact considered the recognition and retrieval process

as a whole to try to improve retrieval performance, but efforts deliberating on the inter-

action between the recognition and retrieval processes are still very limited. One good

example is considering the recognition error pattern with a confusion matrix during re-

trieval [51,110,111]. This involves inferring the correct words actually appearing in the

spoken segments from the erroneous ASR transcriptions. Some have also observed that

although word accuracy is an excellent metric for recognition performance, it is not di-

rectly related to retrieval performance [112–114]. For example, words frequently used

as query terms should be correctly recognized, while recognition errors for function

words have almost no impact on retrieval performance. As a result, word significance

has been taken into account during decoding [112,113], and a minimum classification

error (MCE [115]) discriminative training method was used that also took into account

word significance [114]. In another approach, when an OOV query term is entered, the

OOV term is dynamically inserted into the possible positions in the lattice to handle the

OOV query [116].

On the other hand, estimating acoustic model parameters based on pre-defined cri-

terion is a well-studied problem in speech recognition. Applied to STD with relevance

feedback, however, the problem is different from the conventional acoustic model training

approaches for speech recognition in at least two ways:

1. The system input includes only whether a spoken segment is relevant to a query or

not; it does not include the transcription of any utterance [60,61].

2. The goal is to improve retrieval performance rather than recognition accuracy.

In the following sections, a set of objective functions that take into account the retrieval
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Figure 4.1: The framework of the proposed approach.

process as well as discriminative training algorithms that optimize these objective func-

tions is developed [49,117–119].

4.2 Scenario

The acoustic model re-estimation methods can be used in short-term (Section 3.1.1) and

long-term (Section 3.1.2) contexts user relevance feedback in Section 3.1, and pseudo-

relevance feedback (PRF) in Section 3.2 as well.

In the scenario of short-term context user relevance feedback, after a query is entered,

the retrieval system performs the first-pass retrieval and returns a list of spoken segments.

Some segments in the returned list are then labelled as relevant or irrelevant by the user

and taken as training data. The parameters of a new set of acoustic models are then

estimated on-line according to the feedback information. The first-pass returned list is

finally re-ranked based on the new set of acoustic models. In this scenario, the acoustic
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models are trained based on the feedback information for the query entered, with a goal to

improve the retrieval performance for the specific query. Because the training data is very

limited, it is possible to perform the acoustic model training and re-ranking of returned

list on-line. The scenario of PRF is exactly the same as short-term context user relevance

feedback, except that the relevance information is automatically assumed by the system.

In the scenario of long-term context user relevance feedback, the system collects the

feedback information of a set of queries entered in a certain period of time to estimate

a new set of acoustic models. Then the lattices of the whole corpus to be retrieved are

re-scored based on the new set of acoustic models with a goal to improve the retrieval

performance for queries to be entered in the future.

4.3 Acoustic Model Re-estimation in Short-term Context

User Relevance Feedback

4.3.1 Objective Function

Given positive and negative (or relevant and irrelevant) examples for a certain query Q

from the user relevance feedback, the system estimates a new set of acoustic model pa-

rameters θ∗ by maximizing an objective function F (θ),

θ∗ = arg max
θ
F (θ). (4.2)

With the new set of acoustic models, the likelihood Pθ(x|u) in (4.1) is replaced by

Pθ∗(x|u), so the original relevance score function in (4.1) for each segment is modified

accordingly to S(Q, x|θ∗), based on which all the segments in the first-pass returned list
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are re-ranked. The above procedure is conducted on-line. It is not very time consum-

ing because only a limited amount of data is used for model training. The new acoustic

models are stored only in memory and are discarded after the retrieval session. Several

objective functions F (θ) in (4.2) are proposed below. The objective functions described

below can certainly be applied in the scenario of PRF, except that the positive and negative

examples for training are derived by the system.

Basic Forms

The first objective function FQ
1 (θ) to be maximized in (4.2) is the sum of the relevance

scores of all positive examples

FQ
1 (θ) =

∑
xQt

S(Q, xQt |θ), (4.3)

where xQt is a positive example with respect to the queryQ. The second objective function

FQ
2 (θ) is then the sum of the distances between all positive and negative example pairs,

FQ
2 (θ) =

∑
xQt ,x

Q
f

[S(Q, xQt |θ)− S(Q, xQf |θ)], (4.4)

where xQf is a negative example with respect to the query Q. The new acoustic models θ∗

obtained by maximizing (4.4) best separating the relevance scores between positive and

negative examples.

Considering Evaluation Measures

Since Mean Average Precision (MAP) widely used in many STD tasks is used here as

the basic measure to evaluate retrieval performance in the experiments, maximizing the

distances between all pairs of positive/negative examples as in (4.4) does not necessar-

ily yield improved retrieval performance. MAP quantifies the goodness of the ranked
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Figure 4.2: Rank B leads to larger FQ
2 (θ) in (4.4), but rank A is a better ranking in terms

of MAP.

retrieval results, and as such favours retrieval results with relevant objects ranked higher

than irrelevant objects. Thus the relative levels of all positive examples with respect to

all negative examples are more important than their individual absolute relevance score

differences. To be specific, if a positive example already has a higher relevance score than

all negative examples, any increase in the relevance score of this positive example cannot

further benefit retrieval performance. Therefore, the second objective function FQ
2 (θ) is

not effective enough. Fig 4.2 is the example further demonstrating the above statement.

Each circle represents a spoken segment. The blue circles are relevant segments, and the

red ones are irrelevant segments. The vertical scale in Fig 4.2 is the relevance scores of

the spoken segments. In terms of FQ
2 (θ) in (4.4), rank B is better than rank A since the

relevant and irrelevant segments are better separated in rank B. However, rank A is a bet-

ter ranking because in rank A the irrelevant segments only exceed one relevant segment,

but in rankB both relevant segments are surpassed. Thus actually the MAP value for rank
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A is larger than rank B.

The acoustic model training process can be enhanced if we can estimate a set of

acoustic models that directly maximizes the MAP of the training examples. Although

directly optimizing MAP may be difficult, it has been found that maximizing an accuracy

count A(θ) is equivalent to maximizing a lower MAP bound [82,120]:

A(θ) =
∑
xQt ,x

Q
f

δ(xQt , x
Q
f ), (4.5)

where

δ(xQt , x
Q
f ) =


1 S(Q, xQf |θ) > S(Q, xQf |θ)

0 otherwise

. (4.6)

A(θ) hence represents the number of positive/negative example pairs in which the rele-

vance of the positive example is greater than that of the negative example. However, since

A(θ) in (4.5) is not differentiable, it is not easily optimized. Therefore we approximate

δ(xQt , x
Q
f ) in (4.6) with

sigmoid(xQt , x
Q
f ) =

1

1 + ec[S(Q,x
Q
f |θ)−S(Q,x

Q
f |θ)]

, (4.7)

and define the third objective function to be optimized as

FQ
3 (θ) =

∑
xQt ,x

Q
f

sigmoid(xQt , x
Q
f ). (4.8)

In (4.7), as S(Q, xQf |θ) is larger than S(Q, xQf |θ), sigmoid(xQt , x
Q
f ) tends to 1; otherwise,

sigmoid(xQt , x
Q
f ) tends to 0. c is a constant that controls the slope of the sigmoid function.

Considering Unlabelled Data

When utilizing (4.8) as the objective function, the estimated acoustic model may overfit to

the training examples. For instance, the acoustic models may rank all positive examples
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higher than all negative examples, but it is possible that some positive examples may be

scored lower than some unlabelled segments, since the unlabelled data is not considered

at all in (4.8). This may not be good because some of these unlabelled segments may be

irrelevant. Hence, we wish to estimate a set of acoustic models which keeps the positive

examples ranked at the top of the first-pass returned list, including those unlabelled, to

prevent such overfitting. This can be achieved by replacing the objective function FQ
3 (θ)

with

FQ
4 (θ) = FQ

3 (θ)

+ ρ
∑
xQt ,x

Q
un

sigmoid(xQt , x
Q
un), (4.9)

where xQun is an unlabelled segment within the returned list and ρ is a weighting parameter.

sigmoid(xQt , x
Q
un) tends to 1 if xQt has a higher relevance score than xQun. Equation (4.9)

can be viewed as a smoothing approach that ensures the unlabelled segments are given

lower scores than the positive examples. From another point of view, since each query

only has few relevant segments, in general most retrieved segments are irrelevant, so it is

reasonable to assume the unlabelled segments as negative examples.

4.3.2 Optimization

All the objective functions presented in Section 4.3.1 can be optimized using the weak-

sense auxiliary function similar to that in minimum phone error (MPE) discriminative

training [121]. MPE maximizes the expected phone accuracy as

FMPE(θ) =
R∑
r=1

∑
u∈W (xr)

Pθ(xr|u)P (u)A(u)∑
u∈W (xr)

Pθ(xr|u)P (u)
, (4.10)
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where xr is the r-th training utterance,R is the total number of training utterances,A(u) is

the phone accuracy evaluated for the corresponding phone sequence of the word sequence

u, while everything else has the same definition as in (4.1). Taking FQ
2 (θ) in (4.4) as

an example, here we first show that objective functions FQ
1 (θ) and FQ

2 (θ) mentioned

in Section 4.3.1 can be manipulated to have the same form as (4.10) except for a word

sequence u with a different definition of A(u).

Recall that the relevance score function in (4.1) is written as

S(Q, x|θ) =

∑
u∈W (x) Pθ(x|u)P (u)N(u,Q)∑

u∈W (x) Pθ(x|u)P (u)
, (4.11)

where N(u,Q) is the occurrence count of the word hypothesis Q in the word sequence u.

Hence substituting (4.11) into (4.4) yields

FQ
2 (θ) =

∑
xQt

∑
u∈W (xQt ) Pθ(x

Q
t |u)P (u)|xQf |N(u,Q)∑

u∈W (xQt ) Pθ(x
Q
t |u)P (u)

+
∑
xQf

∑
u∈W (xQf ) Pθ(x

Q
f |u)P (u)|xQt |N ′(u,Q)∑

u∈W (xQf ) Pθ(x
Q
f |u)P (u)

(4.12)

whereW (xQt ) andW (xQf ) are the sets of all possible word sequences in the lattices for the

examples xQt and xQf respectively, |xQt | and |xQf | are the total number of positive and neg-

ative examples included in the evaluation in (4.4), and N ′(u,Q) is defined as −N(u,Q).

Therefore, we can optimize (4.12) in exactly the same way as for MPE by simply re-

placing A(u) in (4.10) by |xQf |N(u,Q) or |xQt |N ′(u,Q) as in (4.12). Note that just like in

MPE, in the model estimation process, the acoustic models are updated iteratively starting

from an initial acoustic model set.

The optimization of FQ
3 (θ) in (4.8) is more complicated. In the MPE model esti-

mation process, at the i-th iteration, given the acoustic model set θi−1 obtained in the
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last iteration, a new acoustic model set θi maximizing a weak-sense auxiliary function of

(4.10) is estimated. The auxiliary function used in MPE training is

HMPE(θi, θi−1)

=
R∑
r=1

∑
a∈A(xr)

[
∂FMPE(θi−1)

∂logPθi−1
(xr|a)

]
logPθi(xr|a), (4.13)

where A(xr) represents all the arcs in the lattice of utterance xr, and ∂FMPE(θi−1)
∂logPθi−1

(xr|a) is a

constant with respect to the acoustic models θi to be estimated. FQ
3 (θ) in (4.8) can be

optimized in a similar way. At the i-th training iteration, we find for FQ
3 (θ) in (4.8) the

auxiliary function

HF3(θi, θi−1)

=
∑
xQt

∑
a∈A(xQt )

[
∂FQ

3 (θi−1)

∂logPθi−1
(xQt |a)

]
logPθi(x

Q
t |a)

+
∑
xQf

∑
a∈A(xQf )

[
∂FQ

3 (θi−1)

∂logPθi−1
(xQf |a)

]
logPθi(x

Q
f |a), (4.14)

where A(xQt ) and A(xQf ) represent all the arcs in the lattices of utterances xQt and xQf .

Then the new acoustic model θi maximizing (4.14) can be estimated in exactly the same

way that (4.13) is maximized in MPE discriminative training. The optimization of FQ
4 (θ)

in (4.9) is then trivial.

4.4 Acoustic Model Re-estimation in Long-term Context

User Relevance Feedback

In long-term context user relevance feedback, the system collects a set of training queries

Qtrain = {Q1, Q2, Q3, . . .} and their positive and negative examples. The retrieval system
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can therefore estimate a new set of acoustic model parameters θ∗lt by maximizing

F lt
5 (θ) =

∑
Q∈Qtrain

FQ(θ) (4.15)

which is the summation over the objective functions of all the queries in the training

query set Qtrain. FQ in (4.15) can be FQ
1 (θ) in (4.3), FQ

2 (θ) in (4.4), FQ
3 (θ) in (4.8) or

FQ
4 (θ) in (4.9). The new models θ∗lt are then used to rescore all the lattices in the spoken

archive, and then the lattices with new scores are stored and indexed for further use. This

approach can yield overall improvements to system performance, even for queries that

were not included in the training query set.

4.5 Experiments for Lecture Courses

4.5.1 Experimental Setup

Mean average precision (MAP) was used as the retrieval performance evaluation measure.

The pair-wise t-test with a significance level of 0.05 was used to gauge the significance of

performance improvements.

33 hours of recorded lectures for a course offered in National Taiwan University was

used as the testing spoken archive, and it is quite noisy and spontaneous. The spoken

archive was produced by a single instructor primarily in Mandarin Chinese but embedded

with some English words. A Chinese lexicon with 10.7K words and a phone set of 35

Mandarin phonemes (NTU-98 [122]) were used. Because of the lack of corpora matched

to the topic (technical content of the course) and the style (spontaneous monologue) for

the retrieved spoken archive here, the Chinese trigram language model was trained from

the Mandarin Giga-word corpus released by Linguistic Data Consortium. Each spoken
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segment in the corpus was transcribed into a lattice with beamwidth of 50. 80 Chinese

queries were manually selected as testing queries, each consisting of a single word, and

another 20 Chinese queries were used as a development set.

In order to evaluate the performance of the proposed approach under different recog-

nition accuracies, we used three sets of acoustic models for generating the lattices:

• Speaker Independent Model (SI): trained by Maximum Likelihood criterion with

4602 state-tied triphones spanned from 35 Mandarin monophones, using a corpus

of clean read speech in Mandarin including 24.6 hours of data produced by 100

males and 100 females.

• Speaker Adaptation Model 1 (ADP1): adapted from the SI model with 500 utter-

ances (about 20 minutes) taken from the training set of the lecture corpus mentioned

above. Only global MLLR was applied.

• Speaker Adaptation Model 2 (ADP2): adapted from the SI model with 500 utter-

ances taken from the training set of the lecture corpus mentioned above. MLLR

with 256 classes cascaded with maximum a posterior estimation was applied.

Since the acoustic models were based on Mandarin phonemes only, the English words

embedded in the Chinese utterances were transcribed into Chinese word sequences with

similar pronunciation, which made the retrieval task more challenging. The character

accuracies of the 1-best transcriptions for the three different sets of acoustic models are

shown in Table 4.1.

44



Table 4.1: Character accuracies for different sets of acoustic models.

SI ADP1 ADP2

Character Accuracy 50.26% 62.55% 72.93%

4.5.2 Experimental Results

Here we tested the acoustic model re-estimation approaches in the scenarios of short- and

long-term context user relevance feedback and PRF. The acoustic model re-estimation

can be started with the SI, ADP1, and ADP2 models used in generating the initial lattices.

We assume the correct relevance information for the top N (N = 5,10,15,20) segments

were available. The user relevance feedback was used to re-estimate the acoustic model

parameters including means, covariances, transition probabilities, and mixture weights.

Short-term Context User Relevance Feedback

Correct relevance information of the top N ( N = 5,10,15,20 ) segments was used here to

obtain a new set of acoustic model parameters θ∗ as in (4.2). The segments below the top

N were then re-ranked based on the new score S(Q,X|θ∗), while the ranking of the top

N segments were frozen. We compared the MAP scores of the returned list before and

after re-ranking. All the smoothing parameters in the model training algorithm and the

parameter ρ for FQ
4 (θ) in (4.9) were decided by the development set, and c in (4.7) was

set to 1.0.

The experimental results for different objective functions (FQ
1 (θ), FQ

2 (θ), FQ
3 (θ),

FQ
4 (θ) in (4.3), (4.4), (4.8), (4.9) ) described in Section 4.3 are shown in Table 4.2, 4.3

and 4.4 with differentN (N = 5,10,15,20). SI, ADP1 and ADP2 models were respectively
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Number of Baseline

Feedback (Without Objective Functions

Segments Feedback ) FQ
1 (θ) FQ

2 (θ) FQ
3 (θ) FQ

4 (θ)

N=5 0.4826 0.5008(0)(1) 0.5086(0)(1)(2) 0.5106(0)(1)(2)

N=10 0.4819 0.4789 0.5058(0)(1) 0.5128(0)(1)(2) 0.5140(0)(1)(2)

N=15 0.4810 0.5005(0)(1) 0.5038(0)(1) 0.5044(0)(1)(2)

N=20 0.4813 0.4998(0)(1) 0.4990(0)(1) 0.4998(0)(1)

Table 4.2: Experimental MAP results for short-term context user relevance feedback with

objective functions FQ
1 (θ), FQ

2 (θ), FQ
3 (θ) and FQ

4 (θ) for N=5,10,15,20. Acoustic model

re-estimation is started with the SI models. The superscript labels (0), (1), (2) and (3)

respectively indicate significantly better than the baseline, FQ
1 (θ), FQ

2 (θ), and FQ
3 (θ).

considered as the initial models θ in Table 4.2, 4.3 and 4.4. The new model parameter set

θ∗ was obtained with 3 training iterations. The superscripts labels on the MAP values, (0),

(1), (2), and (3) respectively indicate the MAP value is significantly better than the baseline,

FQ
1 (θ), FQ

2 (θ), and FQ
3 (θ). Although more user labelled data (more training data) may

lead to better acoustic models for the purpose here, the space left for improvements in

MAP is reduced. Therefore, increasing the number of feedback segments N did not

guarantee more improvements in MAP.

Much can be learned from Table 4.2, 4.3 and 4.4. First, it can be found that FQ
2 (θ) in

(4.4) with the consideration of negative examples was always better than FQ
1 (θ) in (4.3)

except when N = 20. Moreover, in all cases FQ
2 (θ) outperformed the baseline. FQ

3 (θ)

always outperformed the baseline, FQ
1 (θ), and FQ

2 (θ) in all cases, except for N = 20
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Number of Baseline

Feedback (Without Objective Functions

Segments Feedback ) FQ
1 (θ) FQ

2 (θ) FQ
3 (θ) FQ

4 (θ)

N=5 0.6198 0.6326(0)(1) 0.6326(0)(1) 0.6416(0)(1)(2)(3)

N=10 0.6189 0.6260 0.6387(0)(1) 0.6426(0)(1)(2) 0.6485(0)(1)(2)(3)

N=15 0.6286(0) 0.6287(0) 0.6438(0)(1)(2) 0.6427(0)(1)(2)

N=20 0.6293(0) 0.6244 0.6387(0)(1)(2) 0.6399(0)(1)(2)

Table 4.3: Experimental MAP results for short-term context user relevance feedback with

objective functions FQ
1 (θ), FQ

2 (θ), FQ
3 (θ) and FQ

4 (θ) for N=5,10,15,20. Acoustic model

re-estimation is started with the ADP1 models. The superscript labels (0), (1), (2) and (3)

respectively indicate significantly better than the baseline, FQ
1 (θ), FQ

2 (θ), and FQ
3 (θ).

for SI models. FQ
4 (θ) taking into account unlabelled data always outperformed FQ

3 (θ)

in every case, except for N = 15 for ADP1 models and N = 20 for ADP2 models.

FQ
4 (θ) did not outperform FQ

3 (θ) in those cases because FQ
4 (θ) was designed to handle

the problem of overfitting, and therefore was of little benefit when N was large. These

results in Table 4.2, 4.3 and 4.4 verified that the considerations mentioned in Section 4.3

regarding FQ
3 (θ) and FQ

4 (θ) are all correct and contribute to the improvements. FQ
4 (θ)

was found to be the best objective function, and with FQ
4 (θ) only 5 examples (N=5) were

needed to yield very significant improvements over the baseline (0.5106 vs 0.4819 for SI

models, 0.6416 vs 0.6189 for ADP1 models, and 0.7504 vs 0.7307 for ADP2 models).

Fig. 4.3 shows the results with different objective functions and different numbers of

training iterations when the initial acoustic models were the ADP2 models and N = 5.
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Number of Baseline

Feedback (Without Objective Functions

Segments Feedback ) FQ
1 (θ) FQ

2 (θ) FQ
3 (θ) FQ

4 (θ)

N=5 0.7327 0.7366 0.7443(0)(1)(2) 0.7504(0)(1)(2)(3)

N=10 0.7307 0.7353 0.7419(0) 0.7431(0)(1) 0.7492(0)(1)(2)(3)

N=15 0.7351 0.7360 0.7424(0)(1)(2) 0.7461(0)(1)(2)

N=20 0.7382 0.7372 0.7421(0)(1) 0.7416(0)(1)(2)

Table 4.4: Experimental MAP results for short-term context user relevance feedback with

objective functions FQ
1 (θ), FQ

2 (θ), FQ
3 (θ) and FQ

4 (θ) for N=5,10,15,20. Acoustic model

re-estimation is started with the ADP2 models. The superscript labels (0), (1), (2) and (3)

respectively indicate significantly better than the baseline, FQ
1 (θ), FQ

2 (θ), and FQ
3 (θ).

The results with 3 iterations in Fig. 4.3 are exactly those listed in a row of Table 4.4.

Based on Fig. 4.3 we observed that the results of model re-estimation converged in only

a few iterations. For other cases in Table 4.2, 4.3 and 4.4 similar phenomena were also

observed; Fig. 4.3 is a typical example. Such results indicate the concept proposed here

is practically feasible since the training can be completed quickly on-line.

Long-term Context User Relevance Feedback

In long-term context user relevance feedback experiments, the 80 queries were separated

into 2, 4, 8, or 16 folds for cross validation. Each fold was selected once as the testing

query set with the other folds set aside as the training query set. For all training queries,

we assume the relevance information has been given for top 5 segments (N=5) in the first-
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Figure 4.3: Experimental results with different objective functions and different number

of training iterations in acoustic model re-estimation when the initial acoustic models

were the ADP2 models and N = 5 (the relevance information of the top 5 segments were

given).

pass returned lists, and we applied F lt
5 (θ) in (4.15) to train a new set of acoustic models

using the objective function FQ
4 (θ). The new acoustic models were used to rescore all the

lattices in the spoken archive.

Table 4.5 lists the experimental results with different numbers of training queries. In

each test for 2-, 4-, 8-, or 16-fold cross validation respectively 40, 20, 10, or 5 queries

were tested, and 40, 60, 70, or 75 queries were used in training. Clearly, the number of

training queries affects the performance of the re-estimated acoustic models. In addition,

if the acoustic units1 of a new query do not exist in the training query set, the retrieval

performance of the new query may not be influenced by the long-term context relevance

feedback; hence the percentage of the acoustic units shared by the training and testing

query sets may play an even greater role in the performance of long-term context relevance

1triphone models
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Cross Number of Acoustic Unit Initial Acoustic Models

Validation Training queries Coverage SI ADP1 ADP2

baseline - - 0.4819 0.6189 0.7307

2-fold 40 37% 0.4999(0) 0.6304(0) 0.7401

4-fold 60 46% 0.5021(0) 0.6386(0) 0.7410

8-fold 70 47% 0.5087(0) 0.6400(0) 0.7444(0)

16-fold 75 50% 0.5099(0) 0.6419(0) 0.7459(0)

Table 4.5: Experimental results for long-term context user relevance feedback with differ-

ent numbers of training queries forN = 5 (relevance information for top 5 segments were

given). Acoustic model re-estimation can be started with the SI, ADP1 or ADP2 models,

and the baseline MAPs without relevance feedback are 0.4819, 0.6189, and 0.7307 for

lattices generated by the SI, ADP1 and ADP2 models respectively. The superscript labels

(0) indicate significantly better than the baseline.

feedback.

The acoustic unit coverage listed in Table 4.5 is the averaged percentage of triphones

appearing in the test queries that also appear in the training query set. In Table 4.5,

we started acoustic model re-estimation with SI, ADP1 or ADP2 models, and the new

acoustic models were used to rescore the lattices generated by the initial acoustic models.

Although MAP improvements in general increased with the number of training queries,

results showed that it is possible to obtain significant improvements with only 40 training

queries each with 5 labeled segments with SI or ADP1 models as the initial models.
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Figure 4.4: Experimental results for PRF which assumed topN segments on the first-pass

returned list were positive examples with different number of training iterations in acous-

tic model re-estimation. The initial acoustic models were the SI models. The objective

function FQ
1 (θ) in (4.3) was used since there were only positive examples.

Pseudo-Relevance Feedback

Fig 4.4 shows the experimental results for PRF which assumed top N segments on the

first-pass returned list were positive examples with different number of training iterations

in acoustic model re-estimation. The initial acoustic models were the SI models. The

objective function FQ
1 (θ) in (4.3) was used since there were only positive examples. We

found that the acoustic model re-estimation method did not offer any improvements in

the PRF scenario. There are two possible reasons. First, because in the PRF scenario the

segments selected as positive examples were already the ones with the largest relevance

scores, the new acoustic models maximizing the relevance scores of these positive exam-

ples would not have too much difference from the original models used for generating
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the lattices. Second, because there are in general thousands of parameters in the acoustic

models, the models learned may be well fitted to the training data. This was fine in the

case of user relevance feedback with correct relevance information. However, since there

were some incorrect data unavoidably included in the training data (irrelevant segments

considered as positive examples), the models fitting the training data “too” well would

be misleading by the noisy training examples. Therefore, in the scenario of PRF, due to

the noisy training data, training a simpler model with proper regularization may be more

suitable than re-estimating the original acoustic models. This will be further discussed in

the next chapter.

4.6 Experiments for Broadcast News

In the above experiments, the proposed methods were tested on a set of lecture courses

produced by a single speaker. Here the techniques proposed were tested on a broadcast

news corpus with many different speakers.

4.6.1 Experimental Setup

A broadcast news corpus in Mandarin Chinese was used as another spoken archive to

test the proposed approaches. The news stories were recorded from TV stations in Taipei

from 2001 to 2003, with a total length of 198 hours. 160 Chinese queries were manu-

ally selected as testing queries, each consisting of a single word. Again, Mean average

precision (MAP) was used as the retrieval performance measure, and pair-wise t-test with

significance level at 0.05 was also used to test the significance for the performance im-

provement. The parameters for all the methods were all set to the same values as in the
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previous sections without especially mentioned.

For the recognition, 147 right context-dependent initial models plus context-independent

final models were used as the acoustic models for simplicity. A tri-gram language model

trained on 39M words of Yahoo news, and a set of acoustic models with 64 Gaussian

mixtures per state and 3 states per model trained on a corpus of 24.5 hours of broad-

cast news different from the archive tested here were used. The lexicon contained 60K

words. The acoustic vectors used were MFCC with cepstral mean and variance normal-

ization (CMVN) applied. The beam width for recognition was 100. Since 48% and 31%

of the speech in the corpus was produced by the reporters and respondents respectively

including relatively high background noise, and only 147 acoustic models were used, the

character accuracy for the archive was only 54.43%.

4.6.2 Experimental Results

Number of Feedback Segments (N )

Baseline N=5 N=10 N=15 N=20

MAP 0.6302 0.6464∗ 0.6480∗ 0.6482∗ 0.6405∗

Table 4.6: Experimental results of broadcast news for short-term context user relevance

feedback with objective functions FQ
4 (θ) for N=5,10,15,20. The superscript label ∗ indi-

cates significantly better than the baseline.

First, the acoustic re-estimation in short-term context relevance feedback in Sec-

tion 4.3 was tested. Table 4.6 shows the experimental results with different N (N =

5,10,15,20) using the objective function FQ
4 (θ) in (4.9) which obtained the best perfor-
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mance in the experiments of Chapter 4. FQ
4 (θ) with 3 training iterations were used. Sig-

nificant improvements over the baseline were observed.

Cross Number of Acoustic Unit

Validation Training queries Coverage MAP

Baseline - - 0.6302

2-fold 80 87% 0.6319

4-fold 120 93% 0.6340∗

8-fold 140 95% 0.6361∗

16-fold 150 96% 0.6362∗

Table 4.7: Experimental results of broadcast news for long-term context user relevance

feedback with different numbers of training queries for N = 5 (relevance information for

top 5 segments was given). The superscript labels ∗ indicate significantly better than the

baseline.

The long-term context user relevance feedback introduced in Section 4.4 was then

tested. The 160 queries were separated into 2, 4, 8, or 16 folds for cross validation. Each

fold was selected once as the testing query set with the other folds set aside as the training

query set. For all training queries, we assume the relevance information has been given

for top 5 segments (N=5) in the first-pass returned lists, and we applied F lt
5 (θ) in (4.15)

to train a new set of acoustic models using the objective function FQ
4 (θ).

Table 4.7 lists the experimental results with different numbers of training queries. In

each test for 2-, 4-, 8-, or 16-fold cross validation respectively 80, 40, 20, or 10 queries

were tested, while 80, 120, 140, or 150 queries were used in training. Acoustic unit cover-
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age in Table 4.7 is the averaged percentage of initial and final models appearing in the test

queries that also appear in the training query set. The acoustic unit coverage in Table 4.7

is much higher than Table 4.5 as there were 4602 triphones for the lecture courses but

only 147 initial plus final models for the broadcast news considered here. The experiment

results showed that with more than 120 training queries significant improvements were

obtained.

4.7 Summary

We presented a novel approaches for STD where acoustic model parameters are adjusted

according to the results of relevance feedback. Relevance feedback with acoustic model

re-estimation were shown to yield improved performance for both short- and long-term

context relevance feedback. The best performance was obtained by using objective func-

tions that take into account the nature of the retrieval task and the unlabelled segments.
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Chapter 5 Machine Learning Methods with

Pseudo-relevance Feedback

5.1 Introduction

There have been some previous works [8,52–55] taking advantage of the discrimina-

tive capability of machine learning methods such as support vector machines (SVM) or

multi-layer perceptrons (MLP) to facilitate STD. In these works, the information from

the recognition output, such as acoustic likelihood, language model scores, phone poste-

rior probabilities, phone durations and so on, is used as features for the machine learning

methods. On the other hand, techniques of using machine learning methods in relevance

feedback scenario have been extensively developed for video and image retrieval, and the

content of images and videos is usually directly taken as the features. The similar idea can

be considered for spoken content retrieval. Instead of deriving the information from the

recognition output, which may be corrupted by the poor recognition, taking the spoken

content itself, that is, the acoustic vector sequences of the spoken content, as features may

be more effective.

In this chapter, a new approach to improve STD using SVM is introduced [123,

124], which identifies the relevance of each segment directly from its acoustic vectors like

MFCC. The concept of pseudo-relevance feedback (PRF) in Section 3.2 which was well

used in the retrieval of text, image and video is considered here. PRF typically assumes

that a small number of top-ranked objects in the first-pass retrieved results are relevant (or

“pseudo-relevant”), and sometimes in addition some bottom-ranked objects are irrelevant
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(or “pseudo-irrelevant”), and these pseudo-relevant (and -irrelevant) objects can then be

taken as extra information to improve the retrieval results including used as the training

data for the machine learning methods. In this way, a set of training data for each specific

query can be collected for training query-specific models. Although the training data thus

obtained would be noisy due to the lack of supervision, it would be quite matched to the

target spoken archive. Any machine learning methods can be applied in this scenario, but

since SVM yields best performance in the preliminary experiments, only the results based

on SVM are reported in the following.

The approach introduced in this chapter is different from the existing works on STD

in at least two ways:

1. Acoustic vector sequences such as MFCC sequences are taken as the features for

discriminating relevant and irrelevant segments. This kinds of features have not

been tested before.

2. The previous works trained the machine learning models from a set of external

labelled data. This is the first time the scenario of PRF is successfully applied on

STD with machine learning methods.

5.2 Support Vector Machines for Pseudo-relevance Feed-

back

Fig. 5.1 shows the framework for the proposed approach. After a query Q is entered,

the spoken segments x are retrieved and ranked based on the relevance score S(Q, x)
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Figure 5.1: The framework for spoken term detection (STD) using support vector ma-

chines (SVM) with pseudo-relevance feedback.

in (4.1) 1. On the left lower part of the figure is the first-pass returned list. As shown

in Fig. 5.1, some spoken segments in the first-pass retrieved list are respectively taken

as pseudo-relevant and -irrelevant spoken segments, and they are considered as positive

and negative examples to train an SVM model, which would be used for determining the

relevance between a segment and the query term Q. Based on the relevance of the spoken

segments derived from the SVM model, the segments are finally re-ranked. To train such

model, the acoustic vector sequence of each spoken segment x should be represented by

a feature f(x) as will be presented further in Section 5.3. A simple but effective way for

example selection is to respectively take the top and bottom N ′ segments on the first-pass

1The notation θ is ignored in this chapter since the acoustic model parameters are not considered here.
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returned list as positive and negative examples. More sophisticated approach for example

selection will be described later in Section 5.4.

Suppose that the top N ′ segments are taken as the positive example set XT , while

the bottom N ′ segments are taken as the negative example set XF 2. An SVM model

represented as a weight vector w can be learned to measure the relevance of each segment

with respect to the query based on the examples. The SVM model w is learned by solving

the following optimization problem [125]:

min
w,εti,ε

f
j

1

2
‖w‖2 + γ

∑
xti∈XT

εti + γ′
∑
xfj ∈XF

εfj , (5.1)

such that

∀xti ∈ XT , w · f(xti) ≥ 1− εti, εti ≥ 0

∀xfj ∈ XF , w · f(xfj ) ≤ −1 + εfj , εfj ≥ 0.

The constraints in (5.1) require that the inner products of w and the positive examples’

features f(xti) should be larger than one, while the inner products of w and f(xfj ) smaller

than negative one. Each constraint is padded with a per-example slack variable (εti for

example xti and εfj for example xfj ). The sum of the slack variables over the training

examples is minimized to reduce the degree of constraint violations to the smallest extent.

The norm of the vector w to be learned and the scale of the slack variables for positive

and negative examples are respectively traded off with the parameters γ and γ′. Based

on (5.1), w · f(x) is tend to be larger for those positive examples (or pseudo-relevant

segments), and smaller for those negative examples (or pseudo-irrelevant segments), so

w · f(x) for a retrieved segment x can measure the confidence to be relevant with respect

to the query term.
2Since the top and bottom N ′ segments are selected as the examples, the sizes of XT and XF are equal.
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SVM-derived confidence score CSVM(x) is then obtained by linearly normalizing

w · f(x) into a real number between 0 and 1:

CSVM(x) =
w · f(x)− dmin
dmax − dmin

, (5.2)

where dmax and dmin are respectively the maximum and minimum w · f(x) among all

the segments in the first-pass retrieved list. The new relevance score S ′SVM(Q, x) is then

obtained by integrating the original relevance score S(Q, x) in (4.1) with the confidence

score CSVM(x) as

S ′SVM(Q, x) = S(Q, x)CSVM(x)δ, (5.3)

where δ is a weight parameter. A new ranking list is thus generated based on the new

relevance scores in (5.3).

5.3 Feature Representations based on Acoustic Informa-

tion

In order to train an SVM model for each query term as mentioned above, each spoken

segment needs to be represented by a feature. The basic idea here is to directly use

the information in the spoken content instead of recognition output. Since the MFCC

vector sequences representing different occurrences of the same term should be similar

in some way, while very different MFCC vector sequences very possibly imply different

terms, it is therefore possible to discriminate relevant and irrelevant spoken segments by

comparing the MFCC vector sequences with the pseudo-relevant and -irrelevant segments

based on the hypothesized regions. In this section, we show the method representing the

MFCC vector sequences as a feature.
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Figure 5.2: Different forms of feature representations. (a): the definition of a “hypothe-

sized region” in the lattice of segment x for the query termQ. (b), (c) and (d): the features

f1(x), f2(x) and f3(x) respectively.

Here we first define the “hypothesized region” for a spoken segment x with respect

to a query Q to be the part of the MFCC vector sequence for the segment corresponding

to a word arc in the lattice whose word hypothesis is exactly the query term Q with the

highest posterior probability, as shown in Fig. 5.2 (a) at the upper left corner of the figure.

Note that the hypothesized region is a sequence of MFCC vectors with variable length,

but for model training and testing, it is more convenient to represent different spoken

segments by features with fixed dimensionality. Fig. 5.2 (b), (c) and (d) illustrate three

different ways to accomplish this goal as follows.

• Term-based Average: All MFCC vectors in the hypothesized region for the query
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term are averaged into a single feature, so the dimensionality of the feature is the

same as that of each MFCC vector. The value of each component of the feature is

the average of all of the corresponding components of the MFCC vectors (or the

corresponding MFCC parameters) in the hypothesized region. This is denoted by

f1(x) and is shown in Fig. 5.2 (b) at the upper right corner of the figure.

• Phone-based Average and Concatenation: The hypothesized region is segmented

into a sequence of phone segments based on the phone boundaries obtained during

the lattice construction. Each phone segment is then represented by the average

of the MFCC vectors in the phone segment. The concatenation of these averaged

MFCC vectors representing the phone segments then gives the feature for a spoken

segment. Thus for a query term including m phones the dimensionality of the

feature is m times of the dimensionality of a single MFCC vector. This is denoted

by f2(x) and shown in Fig. 5.2 (c) at the lower left corner of the figure.

• State-based Average and Concatenation: Each phone segment is further seg-

mented into a sequence of state segments according to the HMM state boundaries

obtained during the recognition, each of which is again represented by the average

of the MFCC vectors. All these averaged vectors for HMM states in a hypothesized

region are then concatenated as a feature. Thus for l-state phone HMMs the dimen-

sionality of such a feature is l times of the dimensionality of f2(x). This is denoted

as f3(x) and is shown in Fig. 5.2 (d) at the lower right corner of the figure.

Although in the above we only mention MFCC vectors, and in the experiments below

only results using MFCC vectors are reported, it is clear that many other representations

for acoustic information of speech can be used. A good example may be the Gaussian
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posteriorgrams [40,126] which may take better care of the speaker variability issue since

the target spoken segments may be produced by many different speakers.

5.4 Enhanced Pseudo-relevance Feedback

In conventional PRF scenario, some top/bottom-ranked segments in the first-pass results

are usually taken as positive/negative examples. However, it is unavoidable to include

some incorrect examples (irrelevant segments are taken as positive examples, and vice

versa) in the training data especially when the quality of the recognition output is rela-

tively poor. To better handle this problem, a set of examples not restricted to the top and

bottom segments is carefully selected, and the reliability for each selected example is fur-

ther estimated. The formulation of SVM is modified to make the machine only focus on

the presumably correct examples during training, and compel the unreliable examples to

have little influence upon the model learned.

5.4.1 Example Selection and Reliability Estimation

based on Acoustic Similarity

Because the top/bottom-ranked segments in the first-pass results usually have large proba-

bilities to be relevant/irrelevant, the relevance of each segment x can be estimated to some

extent based on the similarity between the feature of x and the features of the top/bottom

segments. According to the above principle, we can obtain an example set not restricted

to top and bottom segments. For each segment in the first-pass retrieved list, its similar-

ity with the top and bottom segments is first computed based on the distances between
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their features. If a spoken segment x is similar to more top-ranked segments than bottom-

ranked segments, it would be taken as positive examples, and the difference between its

similarity to top- and bottom-ranked segments can be taken as the reliability of the ex-

ample. On the contrary, a spoken segment similar to more bottom-ranked segments is a

negative example, and its reliability can be evaluated in the same way.

Based on the above statement, the following procedure is derived to obtain a set of

positive examples X ′T and negative examples X ′F in which each example x has a value

C(x) representing its reliability.

1. Each segment x in the first-pass result is first assigned an initial score w0(x), which

is 1 for top N ′ segments, −1 for bottom N ′ segments, and 0 for the others.

2. Compute the similarity s(xi, xj) between any two segments xi and xj in the first-

pass results based on the Euclidean distance of their features,

s(xi, xj) = exp(−||f(xi)− f(xj)||2
σ

), (5.4)

where f(xi) is the feature of segment xi, which can be either f1(xi), f2(xi) or

f3(xi) in Section 5.3, and σ is the variance of ||f(xi) − f(xj)||2 for all segment

pairs. Smaller ||f(xi)− f(xj)||2 implies larger s(xi, xj).

3. Find the K nearest neighbours for each segment xi based on s(xi, xj), which is

denoted as N(xi).

4. Then a score w(xi) is computed for each segment xi, which would be used in the

next step for example selection. w(xi) is the interpolation of xi’s initial scorew0(xi)

obtained in step (1) and its mutual nearest neighbours’ initial scoresw0(xj) weighed
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by their similarities s(xi, xj):

w(xi) = (1− α)w0(xi) + α
∑
xj ,

xj∈N(xi),
xi∈N(xj)

s(xi, xj)w0(xj), (5.5)

where xj is a K mutual nearest neighbour of xi 3, and α is the interpolation weight.

Based on (5.5), if most of xi’s neighbours are topN ′ segments, w(xi) would be pos-

itive with large value; likewise, if most of xi’s neighbours are bottom N ′ segments,

w(xi) would be very negative.

5. The segments x with positive w(x) in (5.5) are taken as positive examples for SVM

training, while the segments with negative w(x) are negative examples. The abso-

lute value of w(x) is regarded as the reliability for example x, which is denoted as

C(x).

If α in (5.5) is 0, the above procedure reduces to taking top N ′ and bottom N ′ seg-

ments as training examples, and the reliability C(x) for each example would be 1.

5.4.2 Modified Support Vector Machines

From the procedure in the last subsection, a set of positive examples X ′T and a set of nega-

tive examples X ′F are obtained. For each example x in X ′T and X ′F , there is a non-negative

real number C(x) representing the example’s reliability. To compel the unreliable exam-

ples to have less influence upon the model learned, the formulation of SVM in (5.1) is

modified. There are three possible modifications:

• Slack Variables Rescaling [127]: In this approach, the slack variable corresponding

to each example x is multiplied by the reliability C(x), and the formulation for
3xj is xi’s K nearest neighbours, while xi is also xj’s K nearest neighbours.
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SVM is modified as

min
w,εti,ε

f
j

1

2
‖w‖2 + γ

∑
xti∈X ′T

C(xti)ε
t
i + γ′

∑
xfj ∈X ′F

C(xfj )ε
f
j , (5.6)

such that

∀xti ∈ X ′T , w · f(xti) ≥ 1− εti, εti ≥ 0

∀xfj ∈ X ′F , w · f(xfj ) ≤ −1 + εfj , εfj ≥ 0.

In (5.6), because the slack variables for the examples with larger reliabilities are

multiplied by larger C(x), to minimize (5.6), obeying the constraints for the ex-

amples with larger reliabilities would be given precedence over other constraints.

Therefore, the weight vector w learned from (5.6) would be less dependent on the

examples with small reliabilities.

• Margins Rescaling: Here the reliability C(x) is regarded as the margin of the con-

straint for the example x, so the SVM formulation is thus modified:

min
w,εti,ε

f
j

1

2
‖w‖2 + γ

∑
xti∈X ′T

εti + γ′
∑
xfj ∈X ′F

εfj , (5.7)

such that

∀xti ∈ X ′T , w · f(xti) ≥ C(xti)− εti, εti ≥ 0

∀xfj ∈ X ′F , w · f(xfj ) ≤ −C(xfj ) + εfj , εfj ≥ 0.

In (5.7), the examples with larger reliabilities would be equipped with larger mar-

gins. Hence, to minimize (5.7), a weight vector w would be learned to give reliable

positive examples larger w · f(x), while the suspected ones smaller w · f(x), and

vice versa for the negative examples. The model w thus learned can well separate

66



positive and negative examples with large reliabilities due to their larger margins,

and pays less attention on discriminating the unreliable ones.

• Slack Variables & Margins Rescaling: Certainly, it is possible to resale the slack

variables and margins at the same time.

When the reliability C(x) equals 1 for all the training examples, all the above modified

SVM are reduced to ordinary SVM in (5.1).

5.5 Experiments for Lecture Courses

5.5.1 Experimental Setup

Mean Average Precision (MAP) was used as the retrieval performance evaluation mea-

sure. Pair-wise t-test with significance level at 0.05 was used to test the significance for

the performance improvement. The package, CVXOPT 4, was used for solving the SVM

optimization problems. γ and γ′ in (5.1), (5.6) and (5.7) were set to be the inverse of the

average of the training features’ norms 5.

The lecture courses used in Section 4.5 were also tested here. 162 manually selected

Chinese queries were tested here, each consisting of a single word. We used four sets of

acoustic models for generating the lattices (three of them were also used in Section 4.5):

• Speaker Independent Model (SI): As described in Section 4.5.1.

• Speaker Adaptation Model 1 (ADP1): As above.

• Speaker Adaptation Model 2 (ADP2): As above.
4http://abel.ee.ucla.edu/cvxopt/
5SVM-light uses the same strategy to derive the parameters.

67



• Speaker Dependent Model (SD): trained on the 12-hour data which came from the

course of the same instructor but different from the testing archive here with 6620

state-tied triphones spanned from 35 Mandarin monophones and 39 English mono-

phones. The models included triphones developed from the phoneme set including

both Mandarin and English phonemes, so it was possible to transcribe the English

words correctly. The character accuracies (for Chinese parts only) of the 1-best

transcriptions for the models were 84.08%.

5.5.2 Features based on Acoustic Information

Figure 5.3: MAP performance yielded with features f1(x), f2(x) and f3(x) in Section 5.3

when top/bottom N ′ segments in the first-pass results were selected as positive/negative

examples. The speaker independent (SI) models were used in the experiments.

First of all, we tested the performance of features f1(x), f2(x) and f3(x) in Sec-

tion 5.3 when top and bottom N ′ segments in the first-pass results (XT and XF ) were

selected as examples to train the SVM model. Fig. 5.3 shows the MAP performance

yielded with features f1(x), f2(x) and f3(x) in Section 5.3 as functions of N ′, or number
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of top/bottom segments taken as examples. Here N ′ was set from 5 to 50 with intervals

of 5 6. The speaker independent (SI) models were used in the experiments of Fig. 5.3.

The points for N ′ = 0 represent the original first-pass results which are taken as the base-

lines. We found that f1(x) yielded no improvement since the query term usually included

a sequence of phonemes, but the acoustic characteristics of the different phonemes are

averaged and smoothed in f1(x), which is too coarse to represent the hypothesized re-

gion. More sophisticated feature representations, f2(x) or f3(x), yielded improvements

because the acoustic characteristics for each phoneme or even each HMM state were

represented in these features, which better represented the hypothesized region. f3(x)

obviously performed the best, which implied the HMM states were able to represent the

acoustic characteristics within a hypothesized region.

Table 5.1 shows the MAP performance yielded with the feature f3(x) when different

numbers of top/bottom segments were considered as examples. N ′ in Table 5.1 is the

number of top/bottom segments taken as training examples. The four columns are respec-

tively the results for four different sets of acoustic models, SI, ADP1, ADP2 and SD. The

first-pass results obtained before PRF are taken as the baselines, and the superscript la-

bels ∗ indicate significantly better than the baselines. The SVM trained with feature f3(x)

when taking top and bottom N ′ as examples always offered some improvements as com-

pared to the baselines no matter the acoustic models used for generating the lattices. The

improvements achieved were always significant regardless of N ′ for SI, ADP1 and ADP2

models. From Table 5.1, we also observed that as the example sizeN ′ was raised the MAP

first increased and then slightly decreased in most cases. This is reasonable because larger

6If in the first-pass results there were fewer than 2N ′ spoken segments, N ′ was simply set to half of the

number of retrieved segments.
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N ′ implied more training data were used in training the SVM model, and the disturbances

caused by the incorrect assumption about the relevance of the training segments (irrele-

vant segments assumed to be relevant and vice versa) can be diluted. However, when N ′

was too large, since there were only limited number of relevant segments for each query,

some irrelevant segments were inevitably included in the pseudo-relevant training set and

taken as relevant, which caused the degradation for PRF.

Figure 5.4: Distribution of absolute MAP improvement versus the training data purity for

SVM training for each query with feature f3(x) when taking top and bottom 10 segments

as examples (N ′ = 10 in Table 5.1). (a), (b), (c) and (d) are respectively for the results

with different sets of acoustic models, SI, ADP1, ADP2 and SD. Training data purity is

the average of the percentages of pseudo-relevant segments being relevant and pseudo-

irrelevant segments being irrelevant. Each point in the figures represents a query. The

curves in the figures are the quadratic trend lines.
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Since we can not ensure all the pseudo training data is correct, PRF is not able to

improve the performance of every query. Usually PRF improves the performance of some

queries but hurts the others. We are interested to see how SVM with f3(x) performed with

such corrupted training data. We first define the purity of the training data for each query

as the average of the percentages of pseudo-relevant segments being actually relevant and

pseudo-irrelevant segments being actually irrelevant. Fig. 5.4 shows the distribution of the

absolute MAP improvement achieved with each query versus the purity of the training

data for that query with f3(x) when taking top and bottom 10 segments as examples

(N ′ = 10 in Table 5.1). Fig. 5.4 (a), (b), (c) and (d) are respectively for four different sets

of acoustic models, SI, ADP1, ADP2 and SD. Each point in the figures represents one

query, with vertical scales being the absolute MAP improvement for the query, and the

horizontal scales being the purity of training data. Negative improvement means the MAP

performance for the query was actually degraded after PRF. The curves in the figures are

the quadratic trend lines. At the first glance, it seems surprising that higher training data

purity did not always imply larger MAP improvement. This is probably because the query

with higher training data purity usually has higher MAP for the first-pass retrieved results,

the space left for further improvement is therefore limited. Although the very corrupted

training data really degraded the performance, we observed that even though the training

data purity was less than 70%, the improvements could still be achieved for some queries.

Table 5.2 shows the percentage of queries degraded after PRF with feature f3(x)

when taking top and bottom 10 segments as examples (N ′ = 10 in Table 5.1). The four

columns correspond to the results with four different acoustic models, SI, ADP1, ADP2,

and SD. The results with ADP2 model achieved the lowest degradation rate which is less
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than 15%, or the performance of more than 85% queries can be improved after PRF.

5.5.3 Enhanced Pseudo-relevance Feedback

In this section, the enhanced PRF described in Section 5.4 was tested and analysed. Be-

cause the feature f3(x) yielded the best results in Subsection 5.5.2, it was used for repre-

senting a spoken segment in the following experiments.

In Table 5.3, MAP performance yielded by enhanced PRF in Section 5.4 is pre-

sented. The SI model was used in the experiments. Column (a) is the results taking top

and bottom N ′ segments (XT and XF ) as training examples. The results in Column (a)

have been reported in the SI column of Table 5.1. Section (b) is for enhanced PRF (X ′T

and X ′F as training example sets). The variable N ′ for enhanced PRF denotes the number

of top and bottom segments assigned non-zero initial scores w0(x) at the step (1) of the

procedure in Subsection 5.4.1. α in (5.5) was 0.8, andK at the step (3) of the procedure in

Subsection 5.4.1 was 5. f3(x) was used for both SVM training and computing the similar-

ity in (5.4). As described in Subsection 5.4.2, the example reliabilities can be considered

in SVM training by three methods, Slack Variables Rescaling, Margins Rescaling, and

Slack Variables & Margins Rescaling, each corresponds to a column in Section (b). The

superscript labels † indicate significantly better than the results in column (a) under equal

N ′. We observed that the results based on Slack Variables Rescaling (column (b-1)) could

not surpass the baselines (column (a)), whereas Margins Rescaling (column (b-2)) outper-

formed the results of taking top and bottom segments as examples (column (a)) regardless

of N ′. This is probably because Margins Rescaling in (5.7) utilized the reliabilities in a

more aggressive way than Slack Variables Rescaling in (5.6). When utilizing Slack Vari-
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ables Rescaling, C(x) in (5.6) was malfunctioned as the constraint corresponding to the

example x was not violated, so the reliabilities C(x) for most examples would not have

any effect on the training results. On the other hand, since Margins Rescaling considered

the reliabilities as the margins of the constraints, every example’s reliability would have

some influences upon the model learned. Certainly Slack Variables & Margins Rescaling

(column (b-3)) offered the greatest improvements, and the improvements over the base-

lines (column (a)) were significant regardless of N ′. In the following experiments, Slack

Variables & Margins Rescaling was always used for considering the example reliabilities

C(x).

Fig. 5.5 shows MAP performance yielded by enhanced PRF in Section 5.4 as func-

tions of N ′ with feature f3(x). Note that the variables N ′ at the horizontal scales are

the numbers of top and bottom segments used for SVM training for the baselines; or the

numbers of top and bottom segments assigned non-zero initial scores for enhanced PRF

at the step (1) of the procedure in Subsection 5.4.1. Fig. 5.5 (a), (b), (c) and (d) are re-

spectively for different sets of acoustic models, SI, ADP1, ADP2 and SD. Taking top and

bottom segments as training examples is the blue lines (with a rhombus) in the figures,

and the other lines are for enhanced PRF with different K, which is the number of near-

est neighbours at the step (3) of the procedure in Subsection 5.4.1. α in (5.5) was 0.8.

We observed that enhanced PRF in Section 5.4 obtained improvements with SI, ADP1

and ADP2 models regardless of N ′, except N ′ = 5. This shows the effectiveness of

the proposed approach. Remarkable improvements over the baselines were not observed

with the SD models. Since the SD models had extremely high quality which enabled

the first-pass results to be ranked almost perfectly, in that case selecting top and bottom
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(a) SI model

(b) ADP1 model

Figure 5.5: MAP performance yielded by enhanced PRF in Section 5.4 as functions of

N ′ with feature f3(x). N ′ is the number of top and bottom segments considered. K is the

number of nearest neighbours at the step (3) of the procedure in Subsection 5.4.1.
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(c) ADP2 model

(d) SD model

Figure 5.5: MAP performance yielded by enhanced PRF in Section 5.4 as functions of

N ′ with feature f3(x). N ′ is the number of top and bottom segments considered. K is the

number of nearest neighbours at the step (3) of the procedure in Subsection 5.4.1.
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N ′ segments may be sufficient to generate an example set with very high training data

purity. In such condition, the proposed example selection approach and reliability estima-

tion method may not offer too much benefit. For the enhanced PRF with SI model, K = 5

had slightly better performance than K = 10, and the performance of K = 5 and K = 10

was comparable when ADP1 and ADP2 models were used. This implies that enhanced

PRF was not very sensitive to the value of K as long as K was large enough to consider

sufficient neighbours. When K was equal to 1, subtle improvements over the baselines

were still observed.

Table 5.4 presents the MAP performance yielded by enhanced PRF in Section 5.4

with different α in (5.5). K and N ′ in the procedure of Subsection 5.4.1 were fixed to

be 5 and 10 respectively. The four columns correspond to the results with four different

acoustic models, SI, ADP1, ADP2, and SD. The results with α = 0.8 have been re-

ported in Fig 5.5. α = 0.0 represents simply taking top and bottom segments as training

examples. The superscript labels † indicate significantly better than the baselines. The

greatest results in each column were in bold. It is observed that with SI, ADP1 and ADP2

models when the values of α were raised, the improvements increased accordingly. The

peaks of the improvements were achieved when α was 0.9, 0.8 and 0.9 for SI, ADP1 and

ADP2 respectively. This implies that in those conditions the reliabilities estimated by the

neighbours were quite useful, so this factor should be weighted more when estimating the

reliabilities. As we have observed in Fig 5.5 (d), the example selection method did not

provide too much benefit for the SD model, so smaller α was desired in that case.
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5.6 Experiments for Broadcast News

Here we also tested the proposed approaches on the broadcast news corpus. The experi-

mental setup here was exactly the same as that in Section 4.6.1.

Figure 5.6: MAP performance for broadcast news yielded by PRF with SVM in Sec-

tion 5.4 as functions of N ′ with feature f3(x) described in Section 5.3. N ′ at the hori-

zontal scales is the number of top and bottom segments considered. N ′ = 0 represents

the baselines without PRF. Taking top and bottom segments as examples is the blue line

(with rhombuses) in the figure, and the other lines in the figure are for enhanced PRF. K

is the number of nearest neighbours at the step (3) of the procedure in Subsection 5.4.1.

Fig. 5.6 is the MAP performance for the broadcast news corpus yielded by PRF

with SVM with feature f3(x) described in Section 5.3. N ′ at the horizontal scales is the

number of top and bottom segments considered. N ′ = 0 represents the baselines without

PRF. Taking top and bottom segments as examples is the blue line (with rhombuses) in the

figure, and the other lines in the figure are for enhanced PRF. K is the number of nearest

neighbours at the step (3) of the procedure in Subsection 5.4.1. The results observed
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on the broadcast news were consistent with those on the lecture courses. For the results

of taking top and bottom N ′ spoken segments in the first pass as training data (the blue

line in Fig. 5.6), the improvements yielded with feature f3(x) were significant expect

N ′ = 5. Because the broadcast news contains speech covering many different speakers

and environments, more training data was necessary to cover enough acoustic variations.

The enhanced SVM was clearly superior than simply selecting top and bottom segments

regardless of N ′ and K.

5.7 Experiences

Some unsuccessful results not reported are briefly summarized in this section. Besides

representing each spoken segment based on acoustic vector sequences such as MFCC,

there are certainly lots of possible alternatives in the literatures like acoustic likelihood,

language model scores, context of the query hypotheses, positions of the hypotheses,

phone duration and so on. Among all of the above alternatives, phone duration led to the

best results. Some previous researches [55] also pointed out that phone duration is a useful

feature for spoken term detection because the hypotheses with extremely short phone

durations usually imply insertion errors. However, the feature representations proposed

in Section 5.3 were much better than phone or state durations in terms of performance in

the experiments.

Any machine learning method can be used to replace SVM in the scenario of Sec-

tion 5.2 here. However, among all the methods tested, SVM obtained the best results.

Adaboost resulted in very bad results (even worse than the baselines without PRF). Since

Adaboost focuses on the data points hard to be correctly classified by weighting those
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data points more at each training iteration, it may over fit to the incorrect training data.

Since Adaboost is susceptible to the noisy data [128], it is not suitable for PRF. Due to the

very limited training data, ordinary MLP did not result in good results, but with proper

regularization, MLP was comparable to SVM.

The learning-to-rank techniques like Ranking SVM [82] or SVM-MAP [129] which

maximize some criteria related to the retrieval evaluation measures can be considered

here. However, since the training data obtained by PRF is usually noisy, optimizing the

retrieval evaluation based on these noisy training examples may not be helpful. Thus in

the experiments ranking SVM can not outperform ordinary SVM. One-class SVM [130]

which neglects the negative examples was also tested, but it could not outperform ordinary

SVM either.

Moreover, since there are limited data points with relatively high dimensions in the

task considered, dimension reduction may be helpful. However, only PCA yielded very

subtle improvements. Other methods taking the labels of the training data into considera-

tion like LDA did not result in any improvements since the training data is noisy. Biased

Discriminant Analysis [131] which was proposed for image retrieval did not offer im-

provements either. It is also possible to estimate a transformation separating the features

of the segments with distant relevance scores in the first pass [132], but no improvement

was observed by this approach.

Relevance feedback is a very suitable field for testing semi-supervised machine

learning methods [133]. The spoken segments with relevance information from either

user relevance feedback or pseudo-relevance feedback can be considered as labelled data,

and the other spoken segments retrieved in the first pass are unlabelled data. It is intuitive
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that these unlabelled data can enhance the training on the labelled data. However neither

Transductive SVM [134] nor Laplacian SVM [135] outperformed the ordinary SVM in

the experiments.

5.8 Summary

In this chapter, pseudo-relevance feedback is used to automatically generate training data

for query-specific SVM, and then the SVM further re-ranks the first-pass retrieved re-

sults. The features based on acoustic information were defined and used in training the

SVM, and the enhanced PRF with better example selection strategy, example reliability

estimation, and modified SVM was introduced. The proposed approaches were tested un-

der different recognition accuracies, and significant improvements were obtained in most

cases.
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Table 5.1: MAP performance yielded with feature f3(x) in Section 5.3 when different

numbers of top/bottom segments in the first-pass results were selected as positive/negative

examples. The four columns correspond to the results with four different acoustic models,

SI, ADP1, ADP2, and SD. The first-pass results obtained before PRF are taken as the

baselines, and the superscript labels ∗ indicate significantly better than the baselines.

SI ADP1 ADP2 SD

first pass (baseline) 0.4536 0.5539 0.7111 0.8041

N ′ = 5 0.5098∗ 0.6290∗ 0.7559∗ 0.8197∗

N ′ = 10 0.5194∗ 0.6381∗ 0.7602∗ 0.8197∗

N ′ = 15 0.5161∗ 0.6393∗ 0.7584∗ 0.8179∗

Training N ′ = 20 0.5159∗ 0.6410∗ 0.7585∗ 0.8158∗

Data N ′ = 25 0.5159∗ 0.6387∗ 0.7544∗ 0.8150∗

Size N ′ = 30 0.5136∗ 0.6397∗ 0.7506∗ 0.8118

(N ′) N ′ = 35 0.5123∗ 0.6359∗ 0.7465∗ 0.8112

N ′ = 40 0.5124∗ 0.6352∗ 0.7459∗ 0.8105

N ′ = 45 0.5138∗ 0.6330∗ 0.7411∗ 0.8101

N ′ = 50 0.5139∗ 0.6315∗ 0.7425∗ 0.8081
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Table 5.2: The percentage of queries degraded after PRF with feature f3(x) when taking

top and bottom 10 segments as examples (N ′ = 10 in Table 5.1). The four columns

correspond to the results with four different acoustic models, SI, ADP1, ADP2, and SD.

SI ADP1 ADP2 SD

Percentage of

Queries Degraded (%) 16.05 14.81 14.20 27.78
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Table 5.3: MAP performance yielded by enhanced PRF in Section 5.4 with feature f3(x)

and SI models. Column (a) is the results taking top and bottom segments as training exam-

ples, which are taken as the baselines here. Section (b) is for enhanced PRF. The example

reliabilities is considered in SVM training by three methods, Slack Variables Rescaling,

Margins Rescaling, and Slack Variables & Margins Rescaling, each corresponds to a col-

umn in Section (b). The superscript labels † indicate significantly better than the results

in column (a).

Number of (a) (b) Enhanced PRF in Section 5.4

top & bottom top & bottom (b-1) Slack (b-2) (b-3) Slack

segments considered segments as Variables Margins Variables &

(N ′) training examples Rescaling Rescaling Margins Rescaling

5 0.5098 0.4979 0.5206† 0.5189†

10 0.5194 0.5088 0.5248 0.5327†

15 0.5161 0.5112 0.5189 0.5330†

20 0.5159 0.5115 0.5160 0.5335†

25 0.5159 0.5145 0.5178 0.5366†

30 0.5136 0.5143 0.5202 0.5337†

35 0.5123 0.5126 0.5175 0.5311†

40 0.5124 0.5142 0.5185 0.5316†

45 0.5138 0.5153 0.5200 0.5329†

50 0.5139 0.5156 0.5191 0.5320†
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Table 5.4: MAP performance yielded by enhanced PRF in Section 5.4 with different α in

(5.5). K and N ′ in the procedure in Subsection 5.4.1 were fixed to be 5 and 10 respec-

tively. The four columns correspond to the results with four different acoustic models,

SI, ADP1, ADP2, and SD. The superscript labels † indicate significantly better than the

baselines. The greatest results in each column were in bold.

SI ADP1 ADP2 SD

Top & bottom N ′ as

training examples (α = 0.0) 0.5194 0.6381 0.7602 0.8197

α = 0.1 0.5223† 0.6390 0.7616 0.8206

α = 0.2 0.5239† 0.6397 0.7635 0.8213

α = 0.3 0.5256† 0.6408† 0.7642† 0.8217

α = 0.4 0.5268† 0.6418† 0.7646 0.8214

α = 0.5 0.5289† 0.6432† 0.7656† 0.8215

α = 0.6 0.5309† 0.6456† 0.7672† 0.8211

α = 0.7 0.5318† 0.6472† 0.7692† 0.8194

α = 0.8 0.5327† 0.6481† 0.7691† 0.8181

α = 0.9 0.5359† 0.6459† 0.7712† 0.8145

84



Chapter 6 Example-based Approaches

6.1 Introduction

As mentioned, in most approaches of spoken term detection (STD), the spoken utterances

are first recognized and transformed into transcriptions or lattices by speech recognition

technologies, and then the search engine looks through all the transcriptions or lattices

very similar to the text-based information retrieval. The recognition process can be con-

sidered as “quantization”, in which the acoustic vector sequences are quantized into word

symbols. Because different vector sequences may be quantized into the same symbol,

much of the information in the spoken content may be lost in the stage of speech recogni-

tion, especially when the acoustic models used are not well matched to the characteristics

of the acoustic signals, which naturally results in degraded recognition accuracy and poor

detection performance. This is very common in the scenario of spoken content retrieval,

because the huge quantities of spoken content available over the Internet are naturally

produced by many different people under many different acoustic conditions, it is thus

very difficult to train a set of acoustic models well matched to so many different acous-

tic conditions. As a result, when the relevance scores such as the posterior probabilities

of the query term derived from transcriptions or lattices are used to rank the retrieved

spoken segments, it is hard to judge whether a word hypothesis of the query in the tran-

scriptions or lattices is a positive target or a false alarm when the recognition output is

unreliable. Therefore, information straightly from the acoustic vector space is considered

in this chapter to compensate for the recognition output.

Consider Fig 6.1, in which each point represents a spoken segment. To simplify
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the description, in this example it is assumed that each spoken segment only contains an

isolated word, although what would be actually considered in the following experiments

is more complicated. The distance in the space of Fig 6.1 is the distance between the

acoustic vector sequences of the spoken segments, which can be, for example, Dynamic

Time Warping (DTW) distance. The triangles represent the relevant segments containing

queryQ, while the crosses represent the irrelevant segments containing wordW . Because

of the mismatch between the acoustic model and the target spoken archive, some spoken

segments for word W are incorrectly recognized into word Q. The spoken segments in

the blue circle (or the larger circle) are the ones recognized into query Q. When the query

Q is entered, a text-based retrieval system may retrieve all the spoken segments in the

blue circle including the ones being irrelevant actually (those crosses in the blue circle).

However, since a given word may be pronounced in a similar way and thus exhibit similar

acoustic vector sequences, as shown in Fig 6.1 those relevant segments may be close to

each other in acoustic vector space. This acoustic vector similarity between the spoken

segments is useful for STD.

One way to apply the acoustic vector similarity is based on the PRF [38,118,119,

136] scenario in Section 3.2. In this approach, given a user query, the retrieval engine

first searches through the lattices to produce a first-pass returned list ranked according

to a relevance score derived from the lattices. The returned segments with the highest

relevance scores (most confident to be relevant) are then defined as the pseudo-relevant

set. The similarities between each first-pass retrieved spoken segment and the pseudo-

relevant set are computed based on the acoustic vectors of their query hypotheses, and

the first-pass returned list is re-ranked accordingly. If the first-pass retrieval results are
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good enough, and the relevant segments dominate the pseudo-relevant set, the re-ranking

would improve the performance. Based on the example in Fig 6.1, suppose the segments

in the green circle (or the smaller circle) are taken as pseudo-relevant set, the system can

then identify the triangles at the lower right corner which are closer to the pseudo-relevant

set are relevant, whereas the crosses at the upper left corner are irrelevant. In addition,

selecting some segments with lowest relevant scores as pseudo-irrelevant set may also be

helpful.

On the other hand, as described in Section 2.4, many query-by-example techniques

have been developed recently. These approaches let the user use some audio examples

as spoken queries to find more similar spoken content. However, sometimes it may be

troublesome for a user to find some audio examples for the spoken word he/she wants to

retrieve 1. The approaches described in this chapter are very good applications for those

query-by-example techniques. The example-based PRF can be regarded as selecting some

audio examples in an automatic way, and use the audio examples to enhance the retrieval

performance. Although only the simple DTW-based approach is applied in the proposed

method, any state-of-the-art query-by-example techniques can be applied in this approach.

The PRF approach can be taken one step further with graph-based re-ranking [137–

139]. In this approach, we construct for the first-pass retrieved spoken segments a graph in

which each node represents a segment and the edges represent the acoustic vector similar-

ity between the segments’ query hypotheses. Based on the concept that segments strongly

connected to many segments with high/low scores on the graph should have higher/lower

scores, the relevance scores for the segments propagate over the graph, and the segments

1Although the audio examples can be directly spoken by the user, they would be very mismatched to the

target spoken archive, which certainly degrades the performance.
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are re-ranked accordingly. In this way the spoken segments in the first-pass returned list

are considered globally, rather than assuming a pseudo-relevant and -irrelevant set in the

PRF approach. This approach is similar to the very successful PageRank [140,141] used

to rank web pages; PageRank considers the hyperlink between every two pages and com-

putes a converged importance score for each page. A similar approach has been found

useful in video search, in which the similarity between each pair of videos is used to

formulate the ranking problem over a graph [142,143].

Both example-based PRF and graph-based re-ranking based on acoustic similarity

will be introduced in this chapter. In the previous chapters the proposed approaches were

tested on a relatively limited task in which the query includes only a single in-vocabulary

word, and the whole retrieval process was based on word lattices. Here the example-

based approaches were formulated on a more complete task: the query can be shorter or

longer, including one to several words, or can even contain OOV words, and the retrieval

is considered on both word- and subword-based lattices.

Figure 6.1: The demonstration for the concept of the example-based approaches.
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6.2 Example-based Approaches
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Figure 6.2: The complete framework for spoken content retrieval considering acoustic

vector similarity.

The framework for the proposed approach for the task in question is shown in Fig. 6.2.

The spoken segments are first transcribed into word or subword lattices by a speech rec-

ognizer. When the user enters a query, which can be shorter or longer including IV or

OOV words, the retrieval engine searches over the lattices and produces the first-pass re-

turned list as described in Section 6.2.1. The acoustic vector space similarity between

every two retrieved segments is then computed as presented in Section 6.2.2. Based on

these similarities, the list is re-ranked using either pseudo-relevance feedback (PRF) in

Section 6.2.3 or graph-based re-ranking in Section 6.2.4.

89



6.2.1 Complete Formulation for the First-Pass Retrieval

As mentioned, given query Q, the system returns the spoken segments xi with relevance

scores higher than a threshold, and then ranks these segments according to the scores.

However, the relevance score function S(Q, xi) in (4.1) does not support partial match-

ing. For example, if the query Q is composed of three words {w1, w2, w3}, only the

spoken segments containing three concatenated arcs whose hypotheses are w1, w2 and w3

respectively in their lattices can be retrieved. If one of the three words in the query is not

correctly recognized in the lattices, it would not be returned, and this problem may de-

crease the recall rates of the system. To improve the performance, the system should also

retrieve the lattices containing part of the query (for example, only {w1, w2} or {w2, w3}

in the example), but give them smaller relevance scores.

Here a more complete relevance score function which allows partial matching is de-

fined, which can be derived from either word or subword lattices, depending on which

kinds of lattices are indexed. Relevance scores from word lattices are usually more ac-

curate than those from subword lattices, but we must rely on the latter when the query Q

consists of OOV words. Below we first show how to determine the new relevance scores

using word lattices, and then show that the subword lattice-based scores can be obtained

similarly.

We are given queryQ consisting of one to several words,Q = {wj, j = 1, 2, .., NQ},

wj being the j-th word and NQ the number of words in Q. To compute the word-based

relevance score Ŝ(w)(Q, xi) for a segment xi from the word lattice, we calculate the ex-

pected count for each n-gram {wk, ..., wk+n−1}, k = 1, ..., NQ − n+ 1, in the query from

the segment’s lattice as in (6.1), and then aggregate the results for all such n-grams to
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produce the score S(w)
n−gram(Q, xi) for each order of n in (6.2).

E[wk, ..., wk+n−1|xi] (6.1)

=

∑
u∈W (xi)

P (xi|u)P (u)N(u, {wk, ..., wk+n−1})∑
u∈W (xi)

P (xi|u)P (u)
,

where W (xi) is the set of allowed paths in the lattice of xi, u one of the allowed paths,

P (xi|u) the likelihood for the observation sequence of xi given the path u based on

the acoustic model set, P (u) the prior probability of u from the language model, and

N(u, {wk, ..., wk+n−1}) the occurrence count of the n-gram {wk, ..., wk+n−1} in u, and

S
(w)
n−gram(Q, xi) =

NQ−n+1∑
k=1

E[wk, ..., wk+n−1|xi]. (6.2)

The different proximity types, one for each n-gram order n allowed by the query length,

are finally integrated in a weighted sum to yield the relevance score Ŝ(w)(Q, xi) for word

lattices as

Ŝ(w)(Q, xi) =

NQ∑
n=1

anS
(w)
n−gram(Q, xi), (6.3)

where an is a weight parameter. Since Ŝ(w)(Q, xi) here is the aggregation of all the

possible n-grams in the query, segments that only partially match the query can still be re-

trieved; this may increase the recall rate of the retrieval results but not necessary decrease

the precision if an are properly set [37]. Note that Ŝ(w)(Q, xi) in (6.3) reduces to S(Q, xi)

in (4.1) if the query Q consists of only a single word.

The subword-based relevance score Ŝ(s)(Q, xi) can be obtained in exactly the same

way as that in (6.1) – (6.3), except that the query is represented as a sequence of subword

units instead, {sj, j = 1, 2, ..,MQ}, where sj is the j-th subword unit andMQ the number
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of subword units in Q, and E[sk, ..., sk+n−1|xi] is computed on a subword lattice.

E[sk, ..., sk+n−1|xi] (6.4)

=

∑
u∈W (xi)

P (xi|u)P (u)C(u, {sk, ..., sk+n−1})∑
u∈W (xi)

P (xi|u)P (u)
,

S
(s)
n−gram(Q, xi) =

MQ−n+1∑
k=1

E[sk, ..., sk+n−1|xi], (6.5)

Ŝ(s)(Q, xi) =

MQ∑
n=1

a′nS
(s)
n−gram(xi, Q). (6.6)

Here (6.4), (6.5) and (6.6) are exactly the same as (6.1), (6.2) and (6.3) except that the

word wj is replaced by the subword unit sj , S
(s)
n−gram(Q, xi) and Ŝ(s)(Q, xi) are subword-

based n-gram score and subword-based relevance score respectively, and a′n is the corre-

sponding parameter.

6.2.2 Acoustic Vector Similarity

Figure 6.3: The computation of A(xi, xj; {w1, w2}), the acoustic vector similarity be-

tween xi and xj considering the 2-gram {w1, w2}.

Here the acoustic vector similarity between retrieved segments xi and xj is com-

puted, which will be used in PRF and graph-based re-ranking in the next two subsections.
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This similarity can be obtained again based on either word or subword units; here we

show the word-based version first.

Given query Q consisting of a sequence of words {wj, j = 1, 2, .., NQ}, for each n-

gram {wk, ..., wk+n−1} inQ, the DTW distance [144] is first calculated between the acous-

tic vector sequences corresponding to the subpaths with word hypotheses {wk, ..., wk+n−1}

in the lattices of xi and xj2. An example is shown in Fig. 6.3. This yields d(xi, xj; {wk, ..., wk+n−1}),

the DTW distance between xi and xj considering n-gram {wk, ..., wk+n−1} in the query.

The similarity between xi and xj considering {wk, ..., wk+n−1} is then

A(xi, xj; {wk, ..., wk+n−1}) (6.7)

= 1− d(xi, xj; {wk, ..., wk+n−1})− dmin

dmax − dmin

,

where dmax and dmin are the largest and smallest values of d(xi, xj; {wk, ..., wk+n−1})

for all pairs of segments in the first-pass returned list. Equation (6.7) simply normalizes

the DTW distance and transforms it into a similarity score between 0 and 1. In the ex-

periments in this chapter, MFCC vectors were used as the acoustic vectors. If the n-gram

{wk, ..., wk+n−1} does not exist in the lattice of either xi or xj ,A(xi, xj; {wk, ..., wk+n−1})

is set to 0. We then aggregate the similarities considering all such n-grams to produce

score A(w)
n−gram(xi, xj) for each order of n as

A
(w)
n−gram(xi, xj) =

NQ−n+1∑
k=1

A(xi, xj; {wk, ..., wk+n−1}). (6.8)

The different proximity types are finally integrated as a weighted sum to yield the simi-

2If there are multiple subpaths whose word hypotheses are {wk, ..., wk+n−1} in a lattice, only the one

with the highest posterior probability is considered.
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larity between xi and xj:

Sim(w)(xi, xj) =
N∑
n=1

bnA
(w)
n−gram(xi, xj), (6.9)

where bn is another weight parameter.

The computation of subword-based similarity Sim(s)(xi, xj) is exactly the same as

that in (6.7) – (6.9), except that each word wi is replaced by subword unit sj .

A(xi, xj; {sk, ..., sk+n−1}) (6.10)

= 1− d(xi, xj; {sk, ..., sk+n−1})− d′min

d′max − d′min

,

A
(s)
n−gram(xi, xj) =

MQ−n+1∑
k=1

A(xi, xj; {sk, ..., sk+n−1}), (6.11)

Sim(s)(xi, xj) =

MQ∑
n=1

b′nA
(s)
n−gram(xi, xj). (6.12)

Here (6.10), (6.11) and (6.12) are exactly the same as (6.7), (6.8) and (6.9), except

the word wj replaced by the subword unit sj , A
(s)
n−gram(xi, xj) and Sim(s)(xi, xj) are

subword-based score and subword-based similarity respectively, and d′max, d′min and b′n

are the corresponding parameters.

Although we can obtain the relevance score and similarity based on different units

and use them together – for example, it is possible to derive Ŝ(w)(Q, xi) in (6.3) from

word lattices but compute Sim(s)(xi, xj) in (6.12) on subword lattices and use them

together – for simplicity in the experiments below, we always use Ŝ(w)/(s)(Q, xi) and

Sim(w)/(s)(xi, xj) obtained from the same type (word or subword) of lattices together.

Below for simplicity in notation, we simply use Ŝ(Q, xi) to denote relevance score and

Sim(xi, xj) to denote similarity, regardless of whether they are obtained from word or

subword lattices.
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6.2.3 Example-based Pseudo-relevance Feedback

In PRF, the top-ranked Nt segments with the highest relevance scores Ŝ(Q, xi) are se-

lected as pseudo-relevant set Y; the bottom-ranked Nf segments with the lowest Ŝ(Q, xi)

are selected as pseudo-irrelevant set Z . The similarity between each segment xi in the

first-pass result and the pseudo-relevant and -irrelevant sets is then defined as

PRF (xi) =
1

Nt

∑
x∈Y

Sim(xi, x)− 1

Nf

∑
x∈Z

Sim(xi, x), (6.13)

where Nt and Nf are the size of the pseudo-relevant and -irrelevant sets. The value of

PRF (xi) is then linearly normalized between 0 and 1 as PRF ′(xi). The relevance score

Ŝ(Q, xi) for each segment xi is then updated as the new relevance score

S ′p(Q, xi) = Ŝ(Q, xi)
1−δ1PRF ′(xi)

δ1 , (6.14)

where δ1 is a weight parameter between 0 and 1. The segments retrieved are then re-

ranked according to S ′p(Q, xi), and then displayed to the user.

6.2.4 Graph-based Re-ranking

An alternative to PRF for calculating acoustic vector similarity is graph-based re-ranking,

which involves first constructing a graph for the retrieved segments and then applying a

random walk for relevance score propagation.

Here a directed graph such as that in Fig. 6.4 is constructed from the first-pass re-

turned list, in which each node represents a segment. The weight for the edge from xi to

xj (xi → xj) is defined as Sim(xi, xj). For the graph-based approach, usually the edges

with small weights would be pruned to obtain better results.
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Figure 6.4: A simplified example of a graph, the nodes of which correspond to segments.

The edge weights are acoustic similarities between the nodes. Ai and Bi are the node sets

connected respectively by the outgoing and incoming edges of xi.

A new set of graph-based relevance scores Sg(Q, xi) for all xi in the first-pass re-

turned list is then obtained via score propagation on the graph, which satisfies

Sg(Q, xi) = (1− α)Ŝ(Q, xi) + α
∑
xj∈Bi

Sg(Q, xj)Sim
′(xj, xi), (6.15)

where Ŝ(Q, xi) is the relevance score in (6.3), α is an interpolation weight between 0 and

1, Bi is the set of all segments connected to xi as in Fig. 6.4, and xj is a node connected

to xi (xj → xi). Sim′(xj, xi) is the normalized edge weight Sim(xj, xi) over the edges

that start from node xj on the graph:

Sim′(xj, xi) =
Sim(xj, xi)∑

xk∈Aj Sim(xj, xk)
, (6.16)

where Aj is the set of edges that start from xj as in Fig. 6.4. In (6.15) the graph-based

score Sg(Q, xi) of a segment xi depends on two factors interpolated by α: the relevance

score Ŝ(Q, xi) (the first term on the right side of (6.15)) and the score propagation over

the graph based on the normalized edge weights Sim′(xj, xi) (the second term on the

right side). Based on (6.15), Sg(Q, xi) would be large if Ŝ(Q, xi) is large, or xi strongly

connected to many segments xj with large Sg(Q, xj) on the graph. The normalization
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in (6.16) formulates (6.15) as a random walk problem on the graph; random walk theory

guarantees that a set of unique solutions of Sg(Q, xi) can be found since the random walk

here is actually formulated on an irreducible and aperiodic graph [140].

Sg(Q, xi) can be found by power method efficiently. Each node xi is first assigned

an initial value S0
g (Q, xi) (the initial values would not influence the final solutions). At

the t-th iteration, Stg(Q, xi) is obtained as follows.

Stg(Q, xi) = (1− α)Ŝ(Q, xi) + α
∑
xj∈Bi

St−1g (Q, xj)Sim
′(xj, xi). (6.17)

When the process finally converges ( Stg(Q, xi) ≈ St−1g (Q, xi) ), Stg(Q, xi) can be taken

as Sg(Q, xi).

Sg(Q, xi) is finally integrated with Ŝ(Q, xi) for re-ranking as

S ′g(Q, xi) = Ŝ(Q, xi)
1−δ2Sg(Q, xi)

δ2 , (6.18)

where δ2 is a parameter between 0 and 1. The final retrieval results ranked according to

S ′g(Q, xi) in (6.18) are then displayed to the user.

6.3 Experiments for Lecture Courses

6.3.1 IV queries

The results for a set of IV queries on the lecture courses are reported below.

Experimental Setup

In the following experiments, δ1 in (6.14) and δ2 in (6.18) were both set to 0.9, an and a′n

in (6.3) and (6.6) were both set to 105n to favor longer n-grams, and bn and b′n in (6.9) and
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(6.12) were equal to an and a′n. Mean average precision (MAP) was used as the retrieval

performance measure.

The testing spoken archive here is the recorded lectures used in the last two chapters.

In order to evaluate the retrieval performance with respect to acoustic models of different

matched conditions, we used three sets of acoustic models. For all three sets of acoustic

models, we trained a set of state-tied triphones spanned from 37 Mandarin monophones

and 35 English monophones based on the recently-developed state mapping and recovery

techniques [145], so they were different from the acoustic models used in the previous

chapters. The three acoustic models are

• Speaker-independent models (SI) trained on a Mandarin corpus of 24.6 hours of

read speech, produced by 100 male and 100 female speakers, plus the Sinica L2

Taiwanese English corpus with 59.7 hours of English read speech, produced by 229

male and 256 female Taiwanese speakers.

• Speaker-adaptive models (SA) adapted by MLLR with 256 classes cascaded with

the maximum a posterior estimation from the above SI model based on 500 utter-

ances taken from the training set of the lecture corpus.

• Speaker-dependent models (SD) trained on the 12-hour data which came from the

course of the same instructor but different from the testing archive here.

The testing query set included 275 Chinese queries composed of 1 to 3 words, or 2

to 7 Chinese characters. In the experiments here, the language model was trained with the

manual transcriptions of the 12-hour training set of the lecture corpus. A close-to-oracle

lexicon was used which included 11K Chinese words plus 2K English words covering all
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words in the testing archive. Each utterance was transcribed into a bilingual word lattice.

Then we transformed each Chinese word arc into a sequence of concatenated Chinese

character or Mandarin syllable arcs to respectively form character or syllable lattices.

Therefore, for each utterance there were three lattices: word-, character-, and syllable-

based. The recognition accuracies (character accuracies for Mandarin Chinese and word

accuracies for English) were 49.7%, 80.8%, and 88.0% respectively for the SI, SA, and

SD models.

Example-based Pseudo-relevance Feedback

Table 6.1 shows the MAP performance yielded by PRF with different numbers of pseudo-

relevant segments (different Nt in (6.13)) and 40 pseudo-irrelevant segments (Nf = 40 in

(6.13)). The first-pass retrieval results are considered as the baselines. The three columns

SI, SA and SD correspond to three acoustic models with different qualities. First of all,

we found that PRF outperformed the baselines except when Nt = 1. We also observed

that as the number of pseudo-relevant segments was raised the MAP first increased and

then decreased. This is reasonable because a larger Nt implies that more segments are

considered when computing the similarities, and thus that disturbances caused by incor-

rect assumptions about segment relevance (irrelevant segments assumed to be relevant)

are diluted. However, when Nt was too large, since a query usually only has few rele-

vant segments in a spoken archive, more irrelevant segments were inevitably included,

naturally degrading the MAP.

Table 6.2 shows the performance with the number of pseudo-relevant segments fixed

at 9 (Nt = 9 in (6.13)) but with different numbers of pseudo-irrelevant segments (vari-
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Table 6.1: The MAP performance of PRF with different numbers of pseudo-relevant seg-

ments and 40 pseudo-irrelevant segments. The first-pass retrieval results are considered

as the baselines. SI, SA, and SD correspond to the three acoustic models.

Acoustic model SI SA SD

Baseline 0.5596 0.7956 0.8424

1 0.5972 0.7946 0.8392

3 0.6146 0.8126 0.8529

5 0.6199 0.8204 0.8583

Number of 7 0.6223 0.8216 0.8605

pseudo-relevant 9 0.6235 0.8220 0.8601

segments 11 0.6208 0.8205 0.8611

13 0.6219 0.8192 0.8606

15 0.6185 0.8172 0.8591

17 0.6157 0.8157 0.8574

19 0.6136 0.8149 0.8557

ous Nf ). In contrast to Table 6.1, we observed that as the number of pseudo-irrelevant

segments was raised the MAP first increased and then saturated without too much degra-

dation. This may be because the irrelevant segments usually form the majority of the

retrieved segments, so most pseudo-irrelevant segments are truly irrelevant even for very

large values of Nf .
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Table 6.2: MAP performance of PRF with 9 pseudo-relevant segments but different num-

bers of pseudo-irrelevant segments.

Acoustic model SI SA SD

Baseline 0.5596 0.7956 0.8424

5 0.6083 0.8174 0.8557

10 0.6150 0.8194 0.8569

Number of 15 0.6197 0.8196 0.8580

pseudo-irrelevant 20 0.6222 0.8215 0.8579

segments 25 0.6228 0.8221 0.8602

30 0.6234 0.8225 0.8599

35 0.6235 0.8222 0.8603

40 0.6235 0.8220 0.8601

45 0.6235 0.8218 0.8600

Graph-based Re-ranking

In the experiments for the lecture courses, the graphs were all constructed with the fol-

lowing strategy. Each segment (or node) xi was connected by the K ′ segments xj with

highest Sim(xi, xj) (xi ← xj). Thus each node in the graph had a fixed number of in-

coming edges but a variable number of outgoing edges. Table 6.3 shows the results of

graph-based re-ranking yielded by different numbers of incoming edges K ′ with three

sets of different acoustic models, one per column. We found that graph-based re-ranking

outperformed the baselines except when K ′ = 1. The PRF results are also reported; the

numbers of pseudo-relevant and -irrelevant segments here were tuned to maximize the
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Table 6.3: MAP of graph-based re-ranking for different numbers of incoming edges K ′

using different acoustic models. The best results in each column are in bold.

Acoustic model SI SA SD

Baseline 0.5596 0.7956 0.8424

PRF 0.6261 0.8239 0.8621

K ′ = 1 0.5873 0.7884 0.8315

K ′ = 2 0.6463 0.8127 0.8566

Graph K ′ = 3 0.6679 0.8239 0.8666

K ′ = 4 0.6753 0.8281 0.8690

K ′ = 5 0.6783 0.8328 0.8711

K ′ = 10 0.6699 0.8337 0.8717

K ′ = 15 0.6612 0.8301 0.8700

K ′ = 20 0.6550 0.8271 0.8678

MAP values on the testing query set, resulting in unrealistically high performance for

PRF. We found that graph-based re-ranking was so powerful that even though the param-

eters for PRF were tuned in this fashion, graph-based re-ranked still outperformed PRF if

K ′ was reasonably large.

Experimental Results based on Subword Lattices

Table 6.4 shows the results with word and subword units. Parts (a), (b), and (c) are re-

spectively for word-, character- or syllable-based retrieval, and columns SI, SA, and SD

correspond to the different acoustic models. For each case we report the results of the first

102



Table 6.4: MAP results of first pass (baseline), PRF, and graph-based re-ranking under

different acoustic models with word-, character-, or syllable-based retrieval.

Approach SI SA SD

Baseline 0.5596 0.7956 0.8424

(a) Word PRF 0.6261 0.8239 0.8621

Graph 0.6783 0.8328 0.8711

Baseline 0.4733 0.7216 0.7507

(b) Character PRF 0.5761 0.8209 0.8595

Graph 0.6462 0.8349 0.8666

Baseline 0.4329 0.6737 0.6941

(c) Syllable PRF 0.5281 0.7797 0.8182

Graph 0.5739 0.8014 0.8308

pass (baseline), PRF, and graph-based re-ranking. Again, the numbers of pseudo-relevant

and -irrelevant segments for PRF were tuned on the testing queries. It is clear that PRF

always yields improvements over the baseline, and that graph-based re-ranking always

yields still further improvements regardless of the acoustic model or unit type. Note also

that even though the word-based first-pass results were much better than the subword-

based results, PRF and graph-based re-ranking yielded larger improvements for subword

lattices. Because both PRF and graph-based re-ranking only re-rank the first-pass retrieval

results, spoken segments that were not retrieved in the first pass are never retrieved. There-

fore, since subwords have higher recall than words, the proposed approach yielded greater

improvements for subwords.
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(a) SI model

(b) SA model

Figure 6.5: MAP performance of the graph-based re-ranking based on word, character,

syllable, and the integration of the three different units. The horizontal scales in the figures

are the numbers of incoming edges. (a), (b) and (c) are respectively for SI, SA and SD

models.
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(c) SD model

Figure 6.5: MAP performance of the graph-based re-ranking based on word, character,

syllable, and the integration of the three different units. The horizontal scales in the figures

are the numbers of incoming edges. (a), (b) and (c) are respectively for SI, SA and SD

models.
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Fig. 6.5 is the MAP performance of graph-based re-ranking based on word, charac-

ter, syllable, and their integration. The horizontal scales in the figures are the numbers of

incoming edges K ′. Fig. 6.5 (a), (b), and (c) are respectively for SI, SA, and SD models.

Integration was achieved as a weighted sum of the relevance scores of the results obtained

based on word, character, and syllable, the weights of which were 1.0, 0.2 and 0.04 re-

spectively. Since different units contain complementary information, the integration of

the results of different units after graph-based re-ranking always outperformed each in-

dividual lattices regardless of the acoustic models or the number of the incoming edges

K ′.

6.3.2 OOV queries

In this section, the example-based PRF and graph-based re-ranking introduced were tested

on a set of OOV queries. To handle the problem of OOV, the entered queries were trans-

formed into a sequence of subword units via the grapheme-to-phoneme technique, and

the relevance scores Ŝ(s)(Q, xi) in (6.6) and similarity Sim(s)(xi, xj) in (6.12) were com-

puted based on the lattices with subword hypotheses.

Experimental Setup

The testing spoken archive for the OOV queries is also the recorded lectures. For the OOV

query set we used 110 English queries, each consisting of a single word. We trained a 6-

gram joint-sequence model from the CMU dictionary with 130K words as the grapheme-

to-phoneme converter to predict pronunciations for OOV queries [146]3. The canonical

pronunciation for each OOV query was also used. Using the canonical pronunciation as

3The terms in OOV queries were excluded from the CMU dictionary during training.
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the reference, the accuracies of the estimated pronunciation on syllable and phone levels

were 85.8% and 93.8% respectively. The pronunciation was estimated perfectly (same as

the reference) for 81 of the 110 OOV queries (73.6%).

A word/subword hybrid system was used to transcribe each spoken segment. This

kind of hybrid system have been used to handle the OOV problem [147]. In this system,

we used a lexicon composed of 11K Chinese words, 5K English words from the standard

Aurora-4 lexicon, and 10K English syllables for recognition (the English queries were not

included in the 5K English words). 20,000 English documents from the 20Newsgroups

corpus4 were used to train the English language model, which was a mix of word and

syllable n-grams. Those words in the English documents that were not included in the

5K English words were transformed into their corresponding syllable sequences, which

we used to train an English word and syllable mixed trigram language model. A Chinese

word-based trigram language model was trained on the manual transcriptions of the 12-

hour training set of the lecture corpus. These two language models were then interpolated

to produce the lattices composed of a mixture of Chinese words, English words, and En-

glish syllable arcs. We further substituted the Chinese and English word arcs in the lattices

with their corresponding syllables to obtain a set of syllable-based lattices. Thus for each

spoken segment we generated two lattices: one composed of Chinese and English words

and English syllables, and the other composed solely of Chinese and English syllables.

Since the English recognition accuracies for SI and SA were not good enough to obtain

reasonable results, we used only SD models in Section 6.3.1 for the OOV query experi-

ments. Since word accuracy for the hybrid recognition output is undefined, we evaluated

4http://people.csail.mit.edu/jrennie/20Newsgroups/
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the English syllable accuracy instead, which was 43.6% for the SD models.

Experimental results

Here we applied example-based PRF and the graph-based re-ranking on the OOV query

set to determine if these approaches do well with OOV queries too. For the graph con-

struction, here each segment is connected by the K ′ segments with highest acoustic sim-

ilarities, so each node in the graph has a fixed number of incoming edges but a variable

number of outgoing edges. Table 6.5 shows the results for the OOV query experiments

on the SD-generated lattices. Section (a) is for the canonical pronunciation of each OOV

query, while section (b) shows the results based on the pronunciation estimated using the

grapheme-to-phoneme approach. Columns (1) and (2) are respectively for the two sets

of lattices described in Section 6.3.2. Column (1) (Hybrid) refers to the lattices com-

posed of Chinese and English word arcs as well as English syllable arcs, while column

(2) (Syllable) refers to the lattices composed only of Chinese and English syllable arcs.

The numbers of pseudo-relevant and -irrelevant segments for PRF were determined by

4-fold cross validation here. That is, the testing queries were first separated into 4 folds.

Each fold was selected once as the development query set for parameter tuning with the

other folds set aside as the testing query set.

We found that the grapheme-to-phoneme-based pronunciations yielded lower per-

formance compared with the canonical pronunciation (section (b) vs (a)). Also, the lat-

tices purely composed of syllables (column (2)) outperformed the hybrid lattices (column

(1)). Because some of the English queries were wrongly recognized as words with sim-

ilar pronunciations in the lexicon, transforming those words into corresponding syllable

108



sequences increased the recall rates and thus improved the results.

We found that remarkable improvements were achieved by both PRF and graph-

based re-ranking in all cases. However, we also observed that the graph-based re-ranking

did not outperform PRF on the OOV query set. This may be because due to the poor

recognition results for the OOV terms, the relevance scores Ŝ(s)(Q, xi) in (6.6) might be

unreliable. Since the graph-based re-ranking in (6.15) directly applied the lattice-derived

relevance scores, it may be relatively sensitive to the noisy relevance scores from the first

pass. On the other hand, PRF considered the ranking of the first pass, which may be more

robust since the disturbance of the scores did not always imply the change of the ranking

positions. However, more evidences from different corpora are necessary to further verify

this conclusion.

6.4 Experiments for Broadcast News

6.4.1 Experimental Setup

Then example-based PRF and the graph-based approach were tested on the Mandarin

broadcast news used in the previous chapters. In order to evaluate the retrieval perfor-

mance of the proposed approaches with respect to different recognition conditions, dif-

ferent acoustic and language models were used to transcribe the spoken archive. As listed

below, two different recognition conditions were used for the spoken archive:

• Archive (A): The recognition condition used in Section 4.6.1.

• Archive (B): Perceptual Linear Predictive (PLP) feature and phone posterior proba-

bilities estimated by a Multilayer Perceptron (MLP) trained from 10 hours of broad-
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cast news were cascaded as the acoustic vectors. A tri-gram language model trained

on 98.5M words of news from several different sources, and a set of acoustic mod-

els with 48 Gaussian mixtures per state and 3 states per model trained on the 24.5

hours of broadcast news were used. The character accuracy was 62.13%.

The beam width for recognition was both 100 for Archives (A) and (B).

6.4.2 Experimental Results

Table 6.6 shows the results of example-based PRF and the graph-based approach for both

Archives (A) and (B). The superscript labels ∗ and † respectively indicate significantly

better than the baseline and example-based PRF. Ŝ(w)(Q, xi) in (6.3) was used as the rel-

evance score. For the graph construction, the spoken segments xi and xj are connected

to each other if xi is among the K ′-nearest neighbors of xj based on Sim(w)(xi, xj) in

(6.9), and xj is among the K ′-nearest neighbors of xi. The sizes of pseudo-relevant and

-irrelevant spoken segments (Nt and Nf in (6.13)), the value of K ′ and α in (6.15) were

determined by 4-fold cross validation. That is, the testing queries were first separated

into 4 folds. Each fold was selected once as the development query set for parameter tun-

ing with the other folds set aside as the testing query set. Clearly, all the example-based

approach obtained significant improvements over the baselines, and the graph-based ap-

proach outperformed PRF, which was consistent with the results observed on the lecture

courses.

Finally, in Table 6.7, the best result for acoustic model re-estimation method in short-

term context (N = 15 in Table 4.6), and the best result for SVM with PRF (enhanced

PRF with K = 10 and N ′ = 30 in Figure 5.6) are compared with the example-based
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methods in Table 6.7 on Archive (A). It looks like example-based approaches in rows (4)

and (5) were better than the SVM-based PRF in row (3). This may be because SVM-

based PRF needed state boundaries which may be inaccurate with poor recognition mod-

els, and all the acoustic vectors in the same states were simply averaged. On the other

hand, example-based approaches were based on DTW considering all the information

embedded in the acoustic vector sequences. SVM is able to give different dimensions of

the acoustic vectors in different states different importance, which was not considered in

those example-based methods, but this benefit was not reflected in the performance. The

model re-estimation method was the worst among these approaches even though it was

based on user relevance feedback with correct relevance information, and acoustic model

re-estimation did not obtain improvements in the PRF scenario. Since MAP values are

often dominated by the top several items selected, the improvements for user relevance

feedback in MAP scores were actually limited by the frozen, so it is hard to compare the

results based on user relevance feedback and PRF. The inherent problem of the acoustic

model re-estimation approach has been discussed. Since there were too many parameters

in the acoustic models, but only limited training data was available from relevance feed-

back, the model re-estimation process was actually very risky, and some regularization

techniques may be necessary here. It is clear that the graph-based approach was the best

among these approaches. However, it is too arbitrary to conclude that the example-based

approach is the best method, since all of the approaches have some rooms for improve-

ment. This will be further discussed in the last chapter.
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6.5 Summary

In this chapter, the example-based approaches including example-based PRF and the

graph-based approach both taking into account acoustic vector similarity were developed

and tested, and these approaches were applied to spoken term detection with both IV and

OOV queries. We found that these approaches can not only yield improved performance

for word-based lattices but also for subword-based lattices.
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Table 6.5: MAP for OOV queries on SD-generated lattices for different pronunciations,

lattice types, and number of incoming edges K ′.

(a) Canonical (b) g2p

(1) (2) (1) (2)

Hybrid Syllable Hybrid Syllable

Baseline 0.3611 0.3806 0.3092 0.3288

PRF 0.4699 0.4967 0.4127 0.4362

K ′ = 1 0.4246 0.4423 0.3621 0.3888

K ′ = 2 0.4504 0.4659 0.3874 0.4177

Graph K ′ = 3 0.4613 0.4697 0.4020 0.4232

K ′ = 4 0.4666 0.4757 0.4087 0.4287

K ′ = 5 0.4654 0.4760 0.4087 0.4293

K ′ = 10 0.4644 0.4775 0.4114 0.4320

K ′ = 15 0.4684 0.4794 0.4175 0.4340

K ′ = 20 0.4742 0.4823 0.4215 0.4349

K ′ = 100 0.4766 0.4840 0.4213 0.4328
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Approach Archive (A) Archive (B)

Baseline 0.6302 0.6651

Example-based PRF 0.6577∗ 0.6937∗

Graph-based Approach 0.6685∗† 0.6976∗

Table 6.6: Experimental results for Archives (A) and (B) for example-based PRF and the

graph-based approach. The baselines are the results without feedback. The superscript

labels ∗ and † respectively indicate significantly better than the baseline and example-

based PRF.

Approach MAP

(1) Baseline 0.6302

(2) Acoustic Model Re-estimation 0.6482

in Short-term Context (Section 4.3)

(3) SVM with Enhanced PRF (Section 5.4) 0.6572

(4) Example-based PRF (Section 6.2.3) 0.6577

(5) Graph-based Approach (Section 6.2.4) 0.6685

Table 6.7: The comparison of different methods on Archive (A) in terms of MAP. The

baseline is the result without relevance feedback.
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Chapter 7 Semantic Retrieval for Spoken

Content with Acoustic Similarity Graph

7.1 Introduction

Most works in spoken content retrieval nowadays continue to focus on spoken term detec-

tion, for which the goal is simply returning spoken segments that contain the query terms.

This is insufficient because users naturally prefer that the technologies can return all the

objects that the users really want, regardless of whether the query terms are contained

or not. Therefore, there have been some recent works on semantic retrieval for spoken

content [148–153].

In text-based information retrieval, even if the texts to be retrieved include all pre-

cise words, it is still difficult to retrieve all documents relevant to the query, because many

queries are too short to completely represent the user’s intent, but the techniques for se-

mantic retrieval such as latent semantic analysis [154–156] and query expansion [101,

106,157] have been widely studied in text-based information retrieval. Taking ASR tran-

scriptions as text, these techniques developed for text-based information retrieval can be

directly applied on spoken content retrieval. However, since these techniques were devel-

oped for text without errors, the inevitable recognition errors in ASR transcriptions may

degrade the performance. It has been found that enhancing the estimation of the term

frequencies in a spoken document based on the context information of the query hypothe-

ses improves the performance of both language modelling retrieval approach and query

expansion [148].

115



In the previous chapters, it has been found that acoustic vector similarity between

spoken segments is very helpful for the spoken term detection task with the graph-based

re-ranking approach. In this chapter, to have more robust semantic retrieval for spo-

ken documents, the expected term frequencies derived from the lattices are enhanced by

acoustic similarity with the graph-based approach. The enhanced expected term frequen-

cies can not only improve the performance of the language modelling retrieval approach,

but also boosts the performances of the document expansion techniques based on latent

semantic analysis, and query expansion methods considering both words and latent topic

information. Good improvements were observed in the preliminary experiments.

7.2 Language Modelling for Spoken Content Retrieval

Language modelling approach has been known to be very effective for information re-

trieval not only for text, but for spoken content as well [158]. The basic idea for language

modelling approach is that both queries and documents are respectively represented as

language models θQ and θd, and the relevance score function SL(Q, d) used for ranking

the documents d for query Q is the inverse of the KL divergence between θQ and θd:

SL(Q, d) = −KL(θQ|θd). (7.1)

That is, the documents whose language models are similar to the model of the query are

more likely to be relevant. In this way, the problem of retrieval is reduced to the estimation

of the language models for the queries and documents. To simplify the presentation, here

we assume word unigram language models for documents and queries only, although the

proposed approach is not limited to this case.
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Usually the language model θQ is estimated based on the words in the query in (7.2).

P (w|θQ) =
N(w,Q)

|Q|
, (7.2)

where P (w|θQ) is the probability of generating the word w from the model θQ, N(w,Q)

the occurrence counts of the word w in query Q, and |Q| the total number of words in the

query. For document language model θd, when the spoken documents are transcribed into

1-best transcriptions, the estimation for θd is just exactly the same as text-based informa-

tion retrieval. However, as there are inevitable relatively high recognition errors in the

1-best transcriptions, θd thus estimated may be very different from the true word distri-

bution of the spoken document. In Section 7.2.1, the latticed-derived document language

model is represented, and the document model is further enhanced based on the acoustic

similarity with the graph-based approach in Section 7.2.2. Both the document model θd

and query model θQ will be semantically expanded in the following two sections.

7.2.1 Lattice-derived Document Model

Each spoken document d in the collection is first divided into spoken segments {x1, · · · , xi, · · · , xI},

where I is the number of spoken segments in d, and then each spoken segment xi is tran-

scribed into a lattice. We first compute the expected counts of each word w on the lattice

of each segment xi:

E[w|xi] =
∑

u∈W (xi)

N(w, u)P (u|xi), (7.3)

where u is a word sequence in the lattice, W (xi) is the set of all possible word sequences

in the lattice for xi, N(w, u) is the occurrence counts of the word w in u, and P (u|xi) is

the posterior probability of the word sequence u derived from the acoustic and language
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models.

P (u|xi) =
P (u|xi)P (u)∑

u∈W (xi)
P (u|xi)P (u)

, (7.4)

where P (xi|u) the likelihood for the observation sequence of xi given the path u based

on the acoustic model set, and P (u) the prior probability of u from the language model.

The language model θlxi for each spoken segment xi is estimated in (7.5) 1.

P (w|θlxi) =
E[w|xi]
Lxi

, (7.5)

where Lxi is the expected length for segment xi,

Lxi =
∑

u∈W (xi)

|u|P (u|xi), (7.6)

in which |u| is the number of word arcs in u. All the language models θlxi for the spoken

segments xi in the document d are interpolated based on their expected lengths Lxi to

form a document model θld in (7.7).

P (w|θld) =

∑I
i=1 LxiP (w|θlxi)

Ld
, (7.7)

where Ld is the expected document length which is the sum of the length of all the seg-

ments in the documents, or Ld =
∑I

i=1 Lxi .

Then θld is interpolated with a background language model θb trained from all the

spoken documents in the collection C to form a smoothed model θ̄ld in (7.8).

P (w|θ̄ld) = adP (w|θld) + (1− ad)P (w|θb), (7.8)

where

P (w|θb) =

∑
d∈C LdP (w|θld)∑

d∈C Ld
, (7.9)

1The superscript l indicates that the language models are derived from the lattices.
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which is the probability of observing the word w in the whole collection C. ad in (7.8)

is a document dependent interpolation weight, which is equal to Ld
Ld+a

(a is a parameter

to be set). In this way, the background model would have more influence on the shorter

documents [159]. Finally, the smoothed model θ̄ld is served as θd in (7.1) for ranking.

Very similar formulation has been proposed for document model estimation based on the

lattices [158].

It is also possible to apply the BM25 [160] model for semantic retrieval of spoken

content. However, this model applies the inverse document frequency of each term w in

(7.10) when computing the relevance scores.

IDF (w) = log(
|C|
Nw

), (7.10)

where |C| is the total number of documents in the whole collection, and Nw is the number

of documents containing word w. Computing Nw on text is trivial, but whether the word

w exists in a spoken document can not be directly observed. Although it is possible to

solve this problem heuristically, it may result in extra parameters to be tuned. Therefore,

BM25 is not considered in this thesis.

7.2.2 Acoustic Similarity Enhanced Document Model

Although the document models derived from the lattices may be better than the ones

based on the 1-best transcriptions, they still unavoidably suffer from the recognition er-

rors. Considering an arc with word hypothesis w in the lattice of a spoken segment, if

its corresponding acoustic vector sequence is similar to those arcs which are also recog-

nized as word hypothesis w in other spoken segments, this word hypothesis will be more

trust-worthy; otherwise it may be suspected. Based on this concept, the expected counts
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Figure 7.1: The graph constructed for computing the enhanced expected counts for word

w based on acoustic similarity. Nodes in the graph are all spoken segments containing

word arcw in the lattices, and the edge weights represent the acoustic similarities between

the nodes considering word w.

E[w|x] derived from the lattices can be enhanced by the graph-based approach.

The graph-based approach used here is nearly the same as the one introduced in

Chapter 6, expect that it is conducted on all the words w in the lexicon. In the graph-

based approach, for all the words w in the lexicon, we first construct a graph based on all

the segments containing arcs with word hypotheses w in the lattices as Fig 7.1, in which

each node represents a spoken segment. The dynamic time warping (DTW) distance is

calculated between the acoustic vector sequences corresponding to the word hypotheses

w in all segment pairs xi and xj on the graph 2. This yields d(xi, xj;w), the DTW distance

2If there are multiple arcs whose word hypotheses are w in a lattice, only the one with the highest

posterior probability is considered as well. Although this assumption neglects the case that a word may
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between xi and xj considering the term w. The similarity between xi and xj considering

w is then

A(xi, xj;w) = 1− d(xi, xj;w)− dmin

dmax − dmin

, (7.11)

where dmax and dmin are the largest and smallest values of d(xi, xj;w) for all pairs of

segments on the graph. Then A(xi, xj;w) is taken as the weight of edge from xi to xj .

The acoustic similarity enhanced expected counts Ea[w|xi] for word w in segment

xi are then obtained via score propagation on the graph, which makes Ea[w|xi] satisfy 3

Ea[w|xi] = (1− α)E[w|xi] + α
∑
xj∈Bi

Ea[w|xj]Â(xj, xi;w), (7.12)

where E[w|xi] is the lattice-derived expected counts in (7.3), α is an interpolation weight

between 0 and 1, Bi is the set of all segments connected to xi, and xj is a node connected

to xi. Â(xj, xi;w) is the normalized edge weight S(xj, xi;w) over the edges that start

from node xj on the graph:

Â(xj, xi;w) =
A(xj, xi;w)∑

xk∈Aj A(xj, xk;w)
, (7.13)

whereAj is the set of nodes that start from xj . Equation (7.12) is actually the random walk

problem we have considered in Section 6.2.4. Note that the above process is conducted

for every word w in the lexicon off-line, so for all the words w in all the segments x in the

whole collection, we have the enhanced expected counts Ea[w|x].

The enhanced language model θax for segment x is then obtained by integrating

E[w|x] in (7.3) and Ea[w|x] in (7.12) as (7.14).

P (w|θax) =
E[w|x] + µEa[w|x]

Lx + µ
∑

w Ea[w|x]
, (7.14)

occur many times in a spoken segment, it results in reasonable results in the following experiments.
3The superscript a indicates that the language models are enhanced by acoustic similarity.
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in which E[w|x] and Ea[w|x] are weighted summed with a parameter µ in the numera-

tor, and the normalization in the denominator makes P (w|θax) become the probability in

a language model. Equation (7.14) can be understood as taking Ea[w|x] as the parame-

ters of the Dirichlet prior distribution for estimating the language models of the spoken

segments [161].

θax for all the segments x in the document d are then integrated to form θad in the same

way as (7.7). θad is finally interpolated with the background language model to obtain a

smoothed model θ̄ad as (7.8), which is used in (7.1) for ranking.

7.3 Document Expansion with Probabilistic Latent Se-

mantic Analysis

The problem for retrieving the documents semantically related to the query is that these

documents do not necessarily contain the query term. Consider that if the query is “air-

plane”, but the relevant document contains the term “aircraft” instead. The relevant doc-

ument would have very small relevance score SL(Q, d) in (7.1) because the language

models for the query and the document may be very different if they are directly esti-

mated from the term occurrence counts in the query and the document. Hence, in such

case the relevant document would be very hard to be retrieved. This problem can be

solved to some extent by incorporating some latent semantic analysis approaches. Based

on these approaches, the document with “aircraft” may be found to be belong to the topic

about “vehicle”, so we can expand the document with some terms related to “vehicle”

(like “airplane”) to complete its semantic representation.
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Probabilistic Latent Semantic Analysis (PLSA) [154] is used for document expan-

sion here, and Latent Dirichlet Allocation (LDA) [162] is another alternative. PLSA uses

a set of latent topic variables, {Zt, t = 1, 2, ..., T}, where T is the number of topics,

to characterize the “term-document” co-occurrence relationships. Given all the spoken

documents in the collection, PLSA training yields P (w|Zt), the probability of observing

a word w in a document given the latent topic Zt, and P (Zt|d), the mixture weight of

topic Zt for each document d in the collection. Hence, based on the PLSA model the

probability of observing word w given document d can be parameterized by

Pplsa(w|d) =
T∑
t=1

P (w|Zt)P (Zt|d). (7.15)

The parameters P (w|Zt) and P (Zt|d) is learned using the EM algorithm via maximizing

the following objective function:

L =
∑
d∈C

∑
w

P (w|θd)logPplsa(w|d), (7.16)

where θd can be either θld in Section 7.2.1 or θad in Section 7.2.2 here for spoken con-

tent. Equation (7.16) can be understood as searching for a set of parameters P (w|Zt)

and P (Zt|d) minimizing the KL divergence between the document model and the PLSA-

based term distribution in (7.15) for all the documents d in the collection C.

To expand the document with semantically related words, here we adapt the back-

ground language model for each document based on its latent topics [155]. This is realized

by interpolating the PLSA-based word distribution, Pplsa(w|d) in (7.15), with the general

background model θb in (7.9) to have a document dependent background model θdb in

(7.17).

P (w|θdb ) = bdPplsa(w|d) + (1− bd)P (w|θb) (7.17)
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where bd is another document dependent interpolation weight which is defined as Ld
Ld+b

,

and b is a parameter. Then the document dependent background model θdb is used to

smooth the document model θad or θld as in (7.8). Therefore, after smoothed by θdb , the

probabilities of the words in d’s language model highly related to the topics in the docu-

ment d are increased.

There are others ways for incorporating the PLSA into the task of information re-

trieval. One way is to project both document and query into its latent topic space, and

rank the documents according to the similarities of the documents and the query in terms

of latent topic distributions [154]. However, this approach did not always obtain satisfied

results in modern information retrieval [163].

7.4 Query Expansion with Query-regularized Mixture Model

Another common approach for handling the problem of term mismatch in information

retrieval is query expansion which automatically adding some terms into the queries. The

expanded queries enable the retrieval of additional documents that don’t contain the origi-

nal query terms but are semantically related to the queries. The basic idea for query expan-

sion is to assume the top M documents in the first-pass retrieval results with the highest

SL(Q, d) in (7.1) are relevant (or pseudo-relevant), and the terms frequently occurring in

those pseudo-relevant documents may be suitable for query expansion. However, since

not all pseudo-relevant documents are truly relevant, and even not all the words in the

truly relevant documents are semantically related to the query, selecting useful terms for

query expansion is not trivial.
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7.4.1 Word-based Query Expansion

Here we borrow the query-regularized mixture model [157] originally proposed for text

information retrieval for query expansion. This model assumes that the pseudo-relevant

documents are composed of query-related terms and general terms, in which the ratio of

the two are document-dependent. For example, the ratio for the query-related terms to the

general ones is low in the irrelevant document taken as pseudo-relevant. However, those

document-dependent ratios and which terms are query-related are actually unknown, but

can be estimated from the term distributions in the pseudo-relevant documents. After

the estimation, these query-related terms form a new query model θ′Q, which is used to

replace θQ in (7.1). This model is briefly summarized as below.

Suppose the pseudo-relevant documents are {d1, ..., dm, ..., dM}, where M is the

number of documents in this pseudo-relevant set. Each of them is composed of words

generated by either the background language model θb in (7.9), or the query model θ′Q

which is going to be estimated. αdm , the probability of choosing θ′Q for word generation

in document dm, is also unknown. It is possible to estimate θ′Q and αdm for each pseudo-

relevant document dm by maximizing the likelihood of generating these pseudo-relevant

documents in (7.18).

F1(θ
′
Q, αd1 , ..., αdM ) = (7.18)

M∏
m=1

∏
w

(αdmP (w|θ′Q) + (1− αdm)P (w|θb))P (w|θdm ).

In (7.18), the probability of generating the word w in document dm is formulated as

αdmP (w|θ′Q) + (1 − αdm)P (w|θb), and the document model θdm can be either θldm de-

rived from the lattices in Section 7.2.1 or θadm enhanced by the acoustic similarity in Sec-

tion 7.2.2. However, θ′Q maximizing (7.18) may be dominated by the main topics included
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in the pseudo-relevant documents, which are not guaranteed to be query-related. To better

handle this problem, θ′Q is “regularized” by the original query model θQ in (7.2), and we

define a function F2(θ
′
Q) as the prior for θ′Q based on θQ.

F2(θ
′
Q) =

∏
w

P (w|θ′Q)P (w|θQ), (7.19)

in which the model θ′Q closer to θQ will have larger values. θ′Q and αdm are actually

estimated by maximizing the following objective function:

F (θ′Q, αd1 , ..., αdM ) = F1(θ
′
Q, αd1 , ..., αdM )F2(θ

′
Q)λ, (7.20)

where λ is a parameter controlling the influence of the prior function F2(θ
′
Q). The θ′Q

estimated via maximizing (7.20) would not be totally drifted away by the pseudo-relevant

documents because the function F2(θ
′
Q) prefers the expanded query models similar to the

original query model θQ.

Equation (7.20) is maximized by the EM algorithm as below:

• E step: For each word w in each document in {d1, ...dm, ...dM},

P (R|w, dm) =
αdmP (w|θ′Q)

αdmP (w|θ′Q) + (1− αdm)P (w|θb)
(7.21)

• M step: For each document in {d1, ...dm, ...dM},

αdm =
∑
w

P (R|w, dm)P (w|θd) (7.22)

For each word w,

P (w|θ′Q) =
λP (w|θQ) +

∑M
m=1 P (w|θd)P (R|w, dm)

λ+
∑

w

∑M
m=1 P (w|θd)P (R|w, dm)

(7.23)

In (7.21), (7.22) and (7.23), θd can be either θld or θad .
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7.4.2 Topic-enhanced Query Expansion

The above query expansion technique is based on words. Here we further extend the

approach to a semantic version based on latent topics. Everything is in parallel with the

query-regularized mixture model as summarized in the last subsection, but here instead of

estimating a language model (or word distribution) θ′Q, we now seek to estimate a query-

related topic distribution φQ over the latent topics, that is, {P (Z1|φQ), ..., P (Zt|φQ), ..., P (ZT |φQ)},

where T is the number of topics. Here we assume the probabilities of observing all words

given each latent topic P (w|Zt) are already available, which can be obtained from PLSA

or other latent semantic analysis approaches. For each query Q, the topic distribution φQ

is estimated via maximizing the objective function in (7.24).

F ′(φQ, αd1 , ..., αdM ) = F ′1(φQ, αd1 , ..., αdM )F ′2(φQ)λ. (7.24)

The formulations of F ′1(φQ, αd1 , ..., αdM ) and F ′2(φQ) in (7.24) are exactly the same as

(7.18) and (7.19) respectively, except that P (w|θ′Q) in (7.18) and (7.19) is replaced by∑T
t=1 P (w|Zt)P (Zt|φQ).

Equation (7.24) is also solved by EM algorithm as below:

• E step: For each word w in each document in {d1, ...dm, ...dM},

P (R|w, dm) =
αdm

∑T
t=1 P (w|Zt)P (Zt|φQ)

αdm
∑T

t=1 P (w|Zt)P (Zt|φQ) + (1− αdm)P (w|θb)
. (7.25)

For each latent topic Zt (t = 1 to T ),

P (Zt|w) =
P (w|Zt)P (Zt|φQ)∑T
t=1 P (w|Zt)P (Zt|φQ)

(7.26)

• M step: For each document in {d1, ...dm, ...dM},

αdm =
∑
w

P (R|w, dm)P (w|θd) (7.27)
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For each latent topic Zt (t = 1 to T ),

P (Zt|φQ) =

∑
w λP (Zt|w)P (w|θQ) +

∑
w

∑M
m=1 P (Zt|w)P (w|θd)P (R|w, dm)

λ+
∑

w

∑M
m=1 P (w|θd)P (R|w, dm)

(7.28)

With the semantically expanded query model φQ derived above, we have a topic-

enhanced query model θ′′Q:

P (w|θ′′Q) = δ′P (w|θ′Q) + (1− δ′)
T∑
t=1

P (w|Zt)P (Zt|φQ), (7.29)

where δ′ is an interpolation weight. In this way, the words semantically related to the

query but not appearing in the top M documents can still be included into the query

model. The topic-enhanced model θ′′Q is then used to replace θQ in (7.1).

7.5 Experimental Setup

In the experiments, we used the broadcast news corpus in Mandarin Chinese as the spoken

document archive to be retrieved from. The news stories were recorded from radio or TV

stations in Taipei from 2001 to 2003. There were a total of 5047 news stories, with a

total length of 198 hours. The story length ranged from 68 to 2934 characters, with an

average of 411 characters per story. 163 queries and their relevant spoken documents

were provided by 22 graduate students. The number of desired documents for each query

ranged from 1 to 50 with an average of 19.5, and the query length ranged from 1 to

4 Chinese words with an average of 1.6 words, or 1 to 8 Chinese characters with an

average of 2.7 characters. In order to evaluate the retrieval performance of the proposed

approaches with respect to different recognition conditions, we used different acoustic
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and language models to transcribe the spoken documents. The two different recognition

conditions Archives (A) and (B) in Section 6.4.1 were tested here as well.

For the graph construction in Section 7.2.2, nodes xi and xj are connected if xi is

among the K ′-nearest neighbors of xj based on A(xi, xj;w), and xj is among the K ′-

nearest neighbors of xi, and K ′ = 10 in the experiments. The acoustic vectors used

for recognition were also used to compute the acoustic similarity. Only the words oc-

curring in the 1-best transcriptions were processed by the proposed approaches, so only

35K and 39K words were enhanced for Archives (A) and (B) respectively. For the words

without enhancing, we simply set Ea[w|x] equal to E[w|x]. Although we did not com-

pletely enhance all the words in the lexicon, the encouraging results has already been

observed. Mean average precision (MAP) was used as the retrieval performance measure,

and pair-wise t-test with significance level at 0.05 was used to test the significance for the

performance improvement.

7.6 Experimental Results

7.6.1 Basic Language Modelling Retrieval Approach

Table 7.1 reports the results for the basic language modelling retrieval approach. The pa-

rameter a for ad in (7.9) was set to be 1000. Rows (a) and (b) are the results for the two

sets of lattices transcribed under different recognition conditions. The four columns cor-

respond to the results using different document models θd in (7.1). Columns (1) and (2)

are respectively the results based on the manual and 1-best transcriptions. That is, the doc-

ument language models used in (7.1) was estimated based on the word occurrence counts
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Table 7.1: MAP performance yielded by basic language modelling retrieval approach.

The four columns correspond to the results based on manual transcriptions, 1-best tran-

scriptions, lattices and acoustic similarity enhancement respectively. The two rows are

for different recognition conditions. The superscript labels ∗ and † respectively indicate

significantly better than the results based on 1-best transcriptions and lattices.

(1) (2) (3) (4)

MAP Manual 1-best Lattice Enhanced

(a) Archive (A) 0.6216 0.4519 0.4579∗ 0.4706∗†

(b) Archive (B) 0.6216 0.4956 0.5045∗ 0.5171∗†

in the transcriptions, and smoothed by a background model trained on the transcriptions

of all the spoken documents. The results based on the manual transcriptions are served as

upper bound for the proposed approach 4. Column (3) is the results that the lattice-derived

document models θ̄ld obtained in Section 7.2.1 were taken as θd in (7.1), while column (4)

is for the acoustic similarity enhanced document models θ̄ad with µ = 10 in (7.14). Here

the query model θQ was estimated as (7.2) without expansion. The superscript labels ∗ and

† respectively indicate significantly better than the results based on 1-best transcriptions

(column (3)) and lattices (column (4)). Comparing the results in columns (1) and (2), we

found that the recognition errors seriously degraded the retrieval performance. Clearly,

the lattice-derived document models were better than the ones based on 1-best transcrip-

tions (column (3) > column (2)), and the proposed approach further outperformed the

results merely based on the lattices (column (4) > column (3)).

4The results for manual transcriptions were independent to the recognition conditions.
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Table 7.2: KL divergence between the smoothed document models based on manual tran-

scriptions, and 1-best transcriptions, lattices or acoustic similarity enhancement.

MAP (1) 1-best (2) Lattice (3) Enhanced

(a) Archive (A) 0.3922 0.3860 0.3748

(b) Archive (B) 0.3603 0.3538 0.3453

Table 7.2 reports the average KL divergence between the smoothed document models

estimated based on the manual transcriptions, and those based on the 1-best transcriptions

(column (1)), lattices (column (2)) or acoustic similarity (column (3)). We found that the

smoothed language model based on acoustic similarity (θ̄ad) has the smallest KL diver-

gence with respect to the models based on the manual transcriptions. This explains why

the proposed approach improved the results merely based on the lattices in Table 7.1.

7.6.2 Document Expansion

Table 7.3 shows the results for document expansion. The parameter b for bd in (7.17) was

set to 1000. Parts (a) and (b) are respectively for different recognition conditions. The

results for basic language modelling approach are taken as the baselines, which have been

reported in Table 7.1. T refers to the number of topics for the PLSA models used in doc-

ument expansion. Columns Lattice are the results based on the lattice-derived document

models, that is, θld was used for PLSA training in (7.16), and used to interpolate with

the document dependent background model as well. Columns Enhanced are the results

with acoustic similarity, for which θad were used for PLSA training and interpolated with

the document dependent background model. The superscript labels ∗ and † respectively
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Table 7.3: MAP performance yielded by document expansion. The results for basic lan-

guage modelling approach are taken as the baselines. T is the number of topics for PLSA

models. Columns Lattice are the results totally based on the lattice-derived document

models, that is, θld was used for PLSA training in (7.16), and used to interpolate with

the document dependent background model as well. Columns Enhanced are the results

totally based on the acoustic enhanced models, for which θad were used for PLSA training

and interpolated with the document dependent background model. The superscript labels

∗ and † respectively indicate significantly better than the results of the baselines and the

results based on lattices.

(a) Archive (A) (b) Archive (B)

Lattice Enhanced Lattice Enhanced

Baseline 0.4579 0.4706† 0.5045 0.5171†

No. of T=32 0.4855∗ 0.4936∗† 0.5311∗ 0.5402∗†

PLSA T=64 0.4912∗ 0.5018∗† 0.5296∗ 0.5391∗†

Topics T=128 0.4860∗ 0.4930∗† 0.5188∗ 0.5313∗†

indicate significantly better than the results of the baselines (row Baseline) and the results

based on lattices (column Lattice). It is clear that the PLSA-based document expansion

improved the retrieval performance, and the proposed enhanced model can offer extra

improvements in all the conditions.
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7.6.3 Query Expansion

Table 7.4 shows the results of word-based query expansion introduced in Section 7.4.1. λ

in (7.20) was set to 10 in Table 7.4. Parts (a) and (b) are for two recognition conditions

respectively. The results for basic language modelling approach are taken as the baselines,

and they were considered as the first-pass results for selecting pseudo-relevant documents.

M is the number of pseudo-relevant documents. Columns Lattice are for the results

merely based on the lattices, that is, θ̄ld is used for generating the first-pass results, and

the expanded query model θ′Q was estimated based on θld (θd in (7.18) is θld). Columns

Enhanced are the results with acoustic similarity enhancement, or θ̄ad for first-pass results

and θad for estimating θ′Q. We found that word-based query expansion outperformed the

baselines regardless of M , and clearly acoustic similarity improved the performances in

all the cases.

Table 7.5 shows the results for word-based and topic-enhanced query expansion with

and without document expansion respectively. M was 10 for query expansion, and δ′ in

(7.29) was 0.8. The upper and lower sections in the table are respectively for different

recognition conditions. Part (a) in each section is the results without document expan-

sion, and part (b) is the results with document expansion (PLSA topic number T was

64). Row (1) is the results for word-based query expansion, or θ′Q in Section 7.4.1 was

used in (7.1). Row (2) is the results for topic-enhanced query expansion, or θ′′Q in Sec-

tion 7.4.2 was used. Columns Lattice are the results merely based on the lattices, that is,

all the operations were based on θ̄ld and θld; while column Enhanced are for the results

with acoustic similarity. The superscript labels † indicate significantly better than the

results based on lattices. The superscript labels ∗ indicate the topic-enhanced results sig-
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nificantly better than the corresponding word-based ones, and ‡ indicate the results with

document expansion significantly better than their correspondents without document ex-

pansion. Comparing the results in rows (1) and (2), the topic-enhanced query expansion

further improved the word-based version (row (2) > row(1)). Moreover, we found that

the results in Part (b) were always better than their correspondents in Part (a). This shows

that document expansion is additive with query expansion. Last but not least, the results

of column Enhanced were always better than the results of column Lattice in the same

row. This verified that acoustic similarity is helpful for the semantic retrieval techniques

tested here.

7.7 Summary

In this chapter, we propose to enhance the expected term frequencies derived from the

lattices by acoustic similarity with the graph-based approach. The enhanced term fre-

quencies were applied on language modelling retrieval approach, document expansion

and query expansion. Improved performance was observed on a corpus of broadcast news

in Mandarin Chinese under different recognition conditions.
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Table 7.4: MAP performance yielded by the word-based query expansion in Section 7.4.1

with λ = 10. The results for basic language modelling approach are taken as the baselines,

and considered as the first-pass results for selecting pseudo-relevant documents. M is the

number of pseudo-relevant documents. The superscript labels ∗ and † respectively indicate

significantly better than the results of the baselines and the results based on lattices.

(a) Archive (A) (b) Archive (B)

Lattice Enhanced Lattice Enhanced

Baseline 0.4579 0.4706† 0.5045 0.5171†

M=5 0.4604 0.4743∗† 0.5072 0.5169†

M=10 0.4645∗ 0.4757∗† 0.5116∗ 0.5206†

M=15 0.4657∗ 0.4789∗† 0.5156∗ 0.5262∗†

M=20 0.4652∗ 0.4792∗† 0.5156∗ 0.5266∗†

M=25 0.4671∗ 0.4803∗† 0.5144∗ 0.5293∗†

M=30 0.4673∗ 0.4811∗† 0.5141∗ 0.5273∗†

M=35 0.4675∗ 0.4816∗† 0.5127∗ 0.5295∗†

M=40 0.4673∗ 0.4813∗† 0.5123∗ 0.5290∗†

M=45 0.4661∗ 0.4815∗† 0.5103 0.5270∗†

M=50 0.4672∗ 0.4818∗† 0.5082 0.5267∗†
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Table 7.5: MAP performance for word-based and topic-enhanced query expansion with

and without document expansion. λ = 10 for query expansion. The superscript labels

† indicate significantly better than the results based on lattices. The superscript labels ∗

indicate the topic-enhanced results significantly better than the corresponding word-based

ones, and ‡ indicate the results with document expansion in part (b) significantly better

than their correspondents without document expansion in part (a).

Recognition Document Query

Conditions Expansion Expansion Lattice Enhanced

(a) (1) word 0.4645 0.4757†

Archive NO (2) topic 0.4693∗ 0.4799†∗

(A) (b) (1) word 0.4965‡ 0.5048†‡

YES (2) topic 0.4976‡ 0.5069†‡

(a) (1) word 0.5116 0.5206†

Archive NO (2) topic 0.5159∗ 0.5231†

(B) (b) (1) word 0.5333‡ 0.5421†‡

YES (2) topic 0.5350‡ 0.5436†‡
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Chapter 8 Conclusion and Future Work

8.1 Conclusion

About four years ago (2009), when I started to research for spoken content retrieval, the

cascade of the recognition system and text-based retrieval system has achieved many suc-

cessful results. People have found that lattices can offer extra benefit over the 1-best

transcriptions, and many efficient approaches for retrieving such lattice structures have

been investigated. The problem of the OOV queries was addressed by subword-based in-

dexing and grapheme-to-phoneme techniques. Although the poor recognition usually de-

grades the retrieval performance, this problem would be solved by the researchers study-

ing acoustic and language models one day, and does not have too much relation with the

ones researching spoken content retrieval. At that time, people did not aware the possi-

bilities of coupling the recognition and retrieval system and considering the information

beyond recognition output.

Today (2012) several novel methods aiming at breaking the boundary between recog-

nition and retrieval are already proposed, which are summarized in this thesis. The acous-

tic models can be re-estimated by user relevance feedback taking into account the nature

of the retrieval task in Chapter 4. Machine learning methods can take the acoustic vectors

such as MFCC as features, and are successfully applied on pseudo-relevance feedback

(PRF) in Chapter 5. Moreover, in Chapter 6, the acoustic similarity is able to compensate

for the information lost in the recognition stage, which is used in PRF and a graph-based

approach. Those approaches were all verified on lecture courses and broadcast news, and

the example-based approaches can further improve subword-based retrieval system and
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thus improve the performance of a set of OOV queries. In this thesis, semantic retrieval

is also considered, in which the acoustic similarity is used to enhance the term frequency

estimation by a graph-based approach.

I believed that breaking the boundary between recognition and retrieval is the future

trend for spoken content retrieval. This thesis just opens the doors to these kinds of

ideas, and lots of related research topics are waited to be explored and investigated. More

experiments and analysis for more different corpora are certainly necessary, and more

fancy algorithms and powerful methods can be expected in the near future.

8.2 Future Work

It is necessary to test the proposed approaches on some benchmark corpora. I already

conducted the SVM-based method in Chapter 5 and example-based approach in Chapter

6 on the WSJ0 SI-84 (or the training set for the Aurora-4), and the improvements were

observed in the preliminary experiments. Although I do not report these experiments here

due to time limitation, I hope these results can be published in the near future.

The tremendous amount of parameters in the acoustic models and very limited train-

ing data from relevance feedback make the acoustic model re-estimation process risky.

Instead of re-estimating all the parameters in the acoustic models, for the future work it

is possible to estimate a linear transform for the means of the HMM for each phone class

just like MLLR, or estimate the transform of feature dimension reduction like linear dis-

criminant analysis (LDA). It is also possible to estimate language model parameters by

relevance feedback. However, re-estimating the n-gram probabilities did not achieve any

improvements in some preliminary experiments. I found that the information from rele-

138



vance feedback is too sparse for estimating the n-gram probabilities, so the probabilities

re-estimated by those labelled spoken segments seldom influence the scores of unlabelled

segments. Those results have not been reported yet. For language model re-estimation,

estimating the class transition probabilities for the class-based langauge models may be

more realistic. Recent developed continuous language models are another alternatives.

Since these models project the word onto a feature space, and let the different n-gram

probabilities share the common parameters, these models may address the problem of

training data sparsity.

For applying the machine learning methods for spoken content retrieval, certainly

lots of approaches beyond SVM should be tested and investigated. There are several

problems to be solved:

1. The positions of the query hypotheses may be inaccurate, and sometimes there can

be several candidate hypothesis regions in a spoken segment.

2. The state boundaries may be inaccurate as well.

Solving the above problems may especially improve the performance of the OOV queries,

since their hypothesis regions in the segments are usually unclear.

For the example-based approach, only the simple DTW-based approach is used to

compare the two acoustic vector sequences in this thesis. In the future work, any state-of-

the-art approach can be applied to improve the performance. Moreover, there are actually

several graph-based approaches in the literatures. I have tested the associated network

which makes the scores of the nodes connected become locally smooth via solving a

quadratic programming problem, but it did not outperform the random walk.

For the term frequency estimation enhancement, actually any state-of-the-art STD
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methods can be applied here, and the enhanced term frequencies can be applied on any

task about spoken language understanding, for example, speech summarization. On the

other hand, semantic analysis and STD can be reinforced. The term frequencies enhanced

by STD improve the performance of semantic analysis; while semantic analysis can verify

the correctness for some terms in the spoken content, and this information can further

enhance the STD model.
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