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Abstract
Interaction with user is specially important for spoken con-

tent retrieval, not only because of the recognition uncertainty,
but because the retrieved spoken content items are difficult to
be shown on the screen and difficult to be scanned and selected
by the user. The user cannot playback and go through all the
retrieved items and then find out they are not what he is look-
ing for. In this paper, we propose a new approach for inter-
active spoken content retrieval, in which the system can esti-
mate the quality of the retrieved results, and take different types
of actions to clarify the user’s intention based on an intrinsic
policy. The policy is optimized by a Markov Decision Process
(MDP) trained with Reinforcement Learning based on a set of
pre-defined rewards considering the extra burden given to the
user.
Index Terms: Interactive SDR, MDP, Reinforcement Learning

1. Introduction
Numerous successful spoken dialogue systems have been de-
veloped in the past decades. They were usually designed for
a specific application domain, such as airline itinerary plan-
ning [1], train information management [2], and tutoring sys-
tems [3]. Many of such systems are based on a well-defined
database at the back-end and a statistical dialogue manager such
as those similar to a Markov Decision Process (MDP). On the
other hand, interactive information retrieval (IIR) [4, 5] offers
a scenario for human-machine interaction to help the machine
clarify user’s intention during retrieval. Through the interac-
tions, the user may transmit better information to the machine
regarding to what he is looking for, and the machine may there-
fore more accurately return what the user wants. However, for
IIR research, little efforts have been made in borrowing the ex-
periences and expertise from spoken dialogue systems so far.

A good example for IIR system is “Dialogue Navigator for
Kyoto City” [6, 7] , which used a Bayes risk-based dialogue
manager to offer an efficient interaction interface to find infor-
mation about Kyoto city. Interactive retrieval is specially im-
portant for spoken content, not only because recognition errors
produce high degree of uncertainty for the content, but because
the spoken content is difficult to be shown on the screen and
difficult to be scanned and selected by the user. The user cannot
simply playback and go through all the retrieved items and then
choose the one he is looking for. In a recent work, the Markov
decision process (MDP) popularly used in spoken dialogue sys-
tems was used to help the user select keyterms in the IIR process
of a broadcast news browser [8]. In this approach, in each iter-
ation the system returned not only a list of retrieved items, but
a set of keyterms ranked by MDP for the user to select if the
user is not satisfied with the retrieved items. But when the re-
trieved result is poor, the user still needs to take long time to go

through the retrieved items to find that the result is unsatisfac-
tory and then selects the keyterm for the next iteration. A much
better scenario would be as follows. When the retrieved result is
poor, the machine can be smart enough to actively interact with
the user to clarify the user’s intention.

In this paper, we propose a new approach for interactive
spoken content retrieval, in which the system can estimate the
quality of the retrieved results realizing the above scenario, and
take different actions to interact with the user to improve the re-
trieved results. The actions are optimized by MDP trained with
reinforcement learning optimizing a set of pre-defined rewards
considering the extra burden given to the user.

2. Scenario of the proposed approach

Figure 1: A scenario example between system (S) and user (U).

Fig. 1 is a possible interaction scenario for a broadcast news
retrieval system. Suppose now the user is looking for the news
about the meeting of US President Barack Obama with the
leader of China, Hu Jintao. But the user does not know what is
in the back-end archive and thus is not able to formulate an ef-
ficient query for the propose. Instead, he enters the short query
“US President” (U1). The query “US President” is ambigu-
ous since there are too many documents in the archive related
to ”US President”. As a result, the retrieved list may be very
noisy. However, if the system is able to interact with the user
as shown in Fig. 1, the system finds this situation and thus asks
the user for further information (S1), and receives the next in-
struction of “Diplomatic issue” from the user (U2). Since many
news items related to “US President” and “Diplomatic issue”
are about Persian Gulf, so the system further asks if the user
wants news related to “Persian Gulf” and gets the answer “No”
(S2, U3). This answer narrows down the target, and therefore
the system offers a list of possible item examples for the user to
select (S3). With the selection (U4) the system then has enough
information to retrieve the documents the user wants. There-
fore, the retrieval results are presented to the user (S4).



Figure 2: Block diagram of the proposed system.

3. Proposed Approach
3.1. Retrieval Module

The upper part of Fig. 2 is the system’s retrieval module, or the
conventional spoken content retrieval. If a query q is entered,
the module assigns a relevance score rq(d) to each spoken doc-
ument d in the achieve, which represents the degree of relevance
between the query q and spoken document d. In most events,
the documents d are first transcribed into lattices by a recogni-
tion engine and then indexed in some way, for example, in form
of position-specific posterior lattices (PSPLs). The matching
scores accumulated for all n-grams within the query q evaluated
from the indices are weighted and summed to be the relevance
score of document d with respect to query q, rq(d).

3.2. Action Set

There are four possible system actions defined here: (a) Re-
turn Documents, (b) Return Keyterm, (c) Request, and (d) Show
List. After a query q is submitted, the retrieval module searches
through the indices using the query q, and each document d in
the corpus is assigned a relevance score rq(d), which is taken
as the score for each document d at retrieval turn 0, R0(d)
(R0(d) = rq(d)). At each turn i, the system either (1) shows
the retrieved results ranked according to Ri−1(d) and ends the
retrieval session (action (d) Show List), or (2) interacts further
with the user and updates the relevance score of each document
asRi(d) if one of the other three actions, (a) Return Documents,
(b) Return Keyterm, or (c) Request, are selected.

(a) Return Documents: the system returns the current re-
trieved list ranked decreasingly by Ri−1(d), and asks the user
to view the document list from the top and select a relevant doc-
ument as the feedback. The system then extracts a set of terms
T which is the M most important terms in the user-selected
document based on TF-IDF weights, and each term t in T is
used as a query submitted to the retrieval engine. The relevance
score Ri−1(d) is then updated to Ri(d) as

Ri(d) = αRi−1(d) +
β

M

∑
t∈T

rt(d), (1)

where rt(d) is the relevance score obtained with term t taken as
the query, and α and β are weighting parameters.

(b) Return Keyterm: the system asks the user if a keyterm
t∗ is relevant,

t∗ = argmax
t

∑
d∈D

f(d, t)ln(1 + idf(t)), (2)

where D is the top N documents with the highest Ri−1(d),
f(d, t) is the term frequency of term t in document d, and idf(t)
is the inverse document frequency of term t. If the user judges
that term t∗ is relevant, then

Ri(d) = αRi−1(d) + βrt∗(d). (3)

Otherwise, the system takes the term t∗ in a negative way,

Ri(d) = αRi−1(d)− γrt∗(d), (4)

where γ is another weighting parameter.
(c) Request: the user is asked to provide another query t̂,

and the relevance score Ri(d) for each document d is

Ri(d) = αRi−1(d) + βrt̂(d). (5)

Each action above has different properties and should be
chosen carefully based on the particular situation. For exam-
ple, (a) Return Documents can modify the query in a significant
way, while (b) Return Keyterm performs minor adjustment on
the retrieved results with a very low user cost since the user
only has to answer yes or no to the system. (c) Request may of-
fer the system the most information but costs high for the user.
Therefore, how to efficiently combine these different choices is
the main issue in our system.

3.3. State Space

The action the system should take at each turn is decided by its
intrinsic policy π, which is a function whose input is the dia-
logue state and output is the action to be taken. We use two
variables to define the state of the system at turn i. The first
is the quantized retrieval performance of the result ranked by
Ri−1(d). Here we quantize the values of a selected evalua-
tion metric ( for example, mean average precision (MAP) ) into
several bins to indicate different levels of quality of retrieved re-
sults, or different states. This is reasonable because the quality
of the retrieved results should be closely related to the confi-
dence of the system about estimating the user’s intention. The
other variable used to define the state is the number of turns that
have taken place in the dialogue so far, that is, the value of i.
In reality, the retrieval performance can be judged only by the
user, that is, the system can never exactly know how closely the
current retrieval result matches what the user is looking for, so
the system never knows the true state it is in, but can estimate
it. This is why a state estimation module is in the middle of our
dialogue manager of Fig. 2, which is described in Sec. 3.6.

3.4. Reward

When an action is taken, the system obtains a reward, and the
Final Return the system earns for a retrieval session, Gπs0 , is the
summation of the rewards for all the actions taken following the
policy π in the session,

Gπs0 =
∑
a∈Aπs0

C(a), (6)

where s0 is the initial state, Aπs0 is the sequence of actions to
be taken at the states following s0 along the session based on
the policy π, and C(a) the reward for action a. In the pro-
posed approach here, negative rewards, or costs, are assigned
to actions (a) Return Documents, (b) Return Key-term, and (c)
Request since they all involve effort from the user side. On the
other hand, the system obtains positive reward when the action
(d) Show List is taken, which is the gain of the retrieval evalua-
tion metric via interaction. The reward of Show List is defined
as λ(Ef − E0), where E0 is the value of a certain evaluation



metric (e.g. mean average precision(MAP) or similar) of the
first-pass retrieved results ranked by R0(d), Ef a certain eval-
uation metric for the retrieved results of the final state in which
Show List action is taken to finish the retrieval session, and λ
the trade-off parameter between user efforts and retrieval qual-
ity, where a smaller λ indicates the system prefers to minimize
the user efforts than maximize the retrieval result quality. This
is because rewards for all other actions are costs for user effort.
In the experiments below, we tested two sets of λ settings that
justify the generalization of this work.

3.5. Policy Training

As long as a set of training data including queries and the corre-
sponding relevant documents is available, reinforcement learn-
ing can be used to train a policy from the training data. Here we
adopt the ε-soft on-policy Monte-Carlo control algorithm [9].
This algorithm updates the policy iteratively from an initial pol-
icy π0. At iteration n, a training query q is first randomly se-
lected from the training set as the input query for the retrieval
sessionZn. The system generatesZn as the following. For each
traversed state s∗, the system takes action a∗ following πn−1

(a∗ = πn−1(s∗)), the policy obtained in the last iteration, with
probability 1− ε, but randomly takes a different action from the
action set other than a∗ with probability ε, which is usually set
close to zero 1. After the session Zn reaches its final state, the
Q-function for value estimation in reinforcement learning for
each state-action pair (s, a) occurring in Zn is updated as

Qn(s, a) =
(n− 1)Qn−1(s, a) +Gπ

n−1

s

n
, (7)

where Gπ
n−1

s is the Final Return the system obtains in session
Zn started with state s as defined in (6). Note that the state of
the system is known because the relevant documents for query
q is known in the training set. The policy πn is then

πn(s) = argmax
a

Qn(s, a). (8)

If πn is equal to πn−1, then the policy training converges and
we use policy πn for testing [9]. Such a training process is pos-
sible because in the training set the relevant documents for a
query is known, and thus the state is known to the system. Dur-
ing testing, however, the state is unknown because the system
does not know which documents are truly relevant to the user’s
query. Below we thus describe some approaches to estimate the
system state.

3.6. State Estimation

In order to know the state of the system at turn i, the system
should estimate the retrieval performance level for the results
ranked by Ri−1(d). In this work, we combine different pre-
retrieval and post-retrieval predictors for this purpose. These
predictors include clarity score, ambiguity score [10], similar-
ity of the query and the collection [11], query length, the top-N
similarity score between query and retrieved list as well as its
statistical indicators such as mean and variance. We consider
each performance level as a class and use these predictors as
features to train an SVM multi-class classifier from the train-
ing set. However, this is a very difficult classification problem
since we need to “guess” the user intent only from the predictor,
and direct SVM training shows very bad results because of the
problem of insufficient information of the retrieved list. As a
consequence, we adopt a heuristic rule to first cluster training

1If actions that violate the policy are never taken, some state-action
pairs will never be explored during the training process.

data into several local clusters based on two criteria: one is the
relevance score of the top-1 ranking document and the other is
the dialogue turn, and then train an SVM multi-class classifier
for each cluster. In testing phase, we use the two criteria to first
assign a cluster for the retrieved list, then estimates its perfor-
mance level by the corresponding SVM multi-class classifier.

4. Experiments
4.1. Experimental Setup

In the experiments, we used broadcast news stories in Mandarin
Chinese as the spoken document archive to be retrieved from.
There were a total of 5047 news stories, recorded in Taipei from
2001 to 2003 with a total length of 96 hours. For recognition we
used a 60K-word lexicon and a tri-gram language model trained
on 39M words of Yahoo news. We used different acoustic mod-
els for transcribing the spoken documents in order to conduct
evaluations for different recognition accuracies. As listed be-
low, we used two different recognition conditions for the spoken
documents: Doc (I): The spoken documents were recognized
by Acoustic models with 8 Gaussian mixtures per state trained
on a corpus of 24.5 hours of broadcast news different from the
archive tested here, with character accuracy 45.64%. Doc (II):
Same as Doc (I), but with 64 Gaussian mixtures per state, with
character accuracy 52.15%.

Although the evaluation metric can vary from task to task,
Mean Average Precision (MAP) was selected for evaluation
here, since it is widely adopted as an overall statistical perfor-
mance measure for IR. As mentioned in section 3.3, the per-
formance level and number of turns are two variables defining
the states. We quantized the MAP scores of the retrieval results
into 4 bins as 4 performance level. The variable representing the
number of turns was ranged from 1 to 5, and when the number
of turns exceeded 5, we set the variable as 5. The policy training
was started with a plain policy which took the action Show List
at any state. With the consideration of the burden of each action
given to the user, the costs of actions were set empirically.

163 sets of query and relevant document set were provided
by 22 graduate students, each including a query in text form
and its corresponding relevant documents. The number of rel-
evant documents for each query ranged from 1 to 50 with an
average of 19.5, and the query length ranged from 1 to 4 Chi-
nese words. In the experiments below, we simulated the in-
teraction between user and machine. When the system took
the action Return Documents, the simulated user viewed the list
from the top and chose the first relevant document. For the ac-
tion Return Keyterm, the simulated user replied ”YES” if the
keyterm occurred in more than 50% of the relevant documents.
For the action Request, the simulated user entered a term t∗ as
the new query, t∗ = argmaxt

∑
d∈DI

f(d, t)ln(1 + idf(t))

where DI is the relevant document set. 4-fold cross validation
was performed in the following experiments, that is, in each
trail 3 out of 4 query folds were used for policy training, and
the remaining 1 fold for testing.

4.2. Experimental Results

Experimental results are shown in Table 1. The two Sections
Doc (I) and (II) are the results based on the transcriptions of dif-
ferent acoustic models as mentioned above in Sec. 4.1, and we
tested the setting of λ with 1000 and 2000. In Table 1, both the
results in terms of MAP and Final Return is defined in (6) are
reported. We compare the proposed approach with 4 baselines
(rows (1) to (4)). Row (1) is the first-pass results without any in-
teraction, while rows (2), (3) and (4) are respectively the results
for the system which took a fixed action Return Documents, Re-
turn Keyterm, or Request n times and then Show list. The value



Table 1: Mean average precision (MAP) and Final Return(F.Return) for different settings of λ and different recognition accuracies.
Doc (I) Doc (II)

λ=1000 λ=2000 λ=1000 λ=2000
Policy MAP F.Return MAP F.Return MAP F.Return MAP F.Return

Baseline

(1) No Interaction 0.3703 – 0.3703 – 0.4335 – 0.4335 –
(2) Return Documents 0.3341 -56.31 0.3341 -92.61 0.3807 -72.87 0.3807 -125.7
(3) Return Key-term 0.3693 -11.23 0.3693 -12.28 0.4283 -15.49 0.4283 -20.79

(4) Request 0.4241 4.18 0.4241 57.99 0.4890 5.72 0.4890 61.08

MDP (5) Oracle 0.4607 46.75 0.4735 139.73 0.5249 40.63 0.5267 124.71
(6) Estimate 0.4335 19.92 0.4558 91.25 0.4920 23.30 0.4975 84.05

Figure 3:
Mean Average Precision (MAP) for the proposed approach with
estimated states under different number of training iterations.

of n was tuned to give the best results. Rows (5) and (6) are the
results for the proposed approach after the system performance
converges. Row (5) is the results that the state at each turn was
completely known to the system, which can be considered as
the performance upper bound for the proposed method. Row
(6) is the results with estimated states. Among all the baselines
listed in Table 1, we found that only Request achieved improve-
ments in terms of MAP and Final Return (rows (4) vs (1)), while
taking only Return Documents or Return Keyterm could not of-
fer any improvements compared with first-pass results (rows (2)
and (3) vs (1)). However, the oracle results (row (5)) show that
under the condition of perfect state information, using MDP to
model the interaction mechanism attained a very significant im-
provements both in terms of MAP and Final Return. For the
results with estimated states, due to the unavoidable imperfect
state prediction, performance is poorer than oracle (rows (6) vs
(5)) but actually much better than any other baseline policies
listed in Table 1 (rows (6) vs (1), (2), (3) and (4)). Also note
that different recognition accuracies and λ settings exhibit the
same trends in out experiments.

Fig. 3 and Fig. 4 respectively show the learning curves for
the MAP and Final Return for the proposed method with esti-
mated states under different training iterations. Despite of some
jitters in the early phase of training, both the MAP and Final Re-
turn grew gradually during learning, and then started to saturate
around 2000 iterations.

5. Conclusion
Due to the recognition uncertainty and browsing difficulty for
spoken contents, interactive spoken content retrieval comes into
play a significant role. In this paper, we propose a new ap-
proach to model the interactive spoken content retrieval process
as a Markov decision process (MDP) whose policy is optimized
by Reinforcement Learning based on the trade-off between the
quality of the retrieved list and the extra burden imposed to the
user. The quality of the retrieval result is used to estimate the

Figure 4:
Final Return for the proposed approach with estimated states
under different number of training iterations.

state of the system, and several query performance predictors
trained by multi-class SVM are used to predict the system’s
current state. Our experiments unveil that this system can learn
how to act properly given any state from a bunch of simulated
training episodes and a completely plain policy.
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