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Abstract
It is very attractive for the user to retrieve photos from a huge
collection using high-level personal queries (e.g. “uncle Bill’s
house”), but technically very challenging. Previous works pro-
posed a set of approaches toward the goal assuming only 30%
of the photos are annotated by sparse spoken descriptions when
the photos are taken. In this paper, to promote the interac-
tion between different types of features, we use the continuous
space word representations to train a paragraph vector model
for the speech annotation, and then fuse the paragraph vector
with the visual features produced by deep Convolutional Neu-
ral Network (CNN) using a Deep AutoEncoder (DAE). The
retrieval framework therefore combines the word vectors and
paragraph vectors of the speech annotations, the CNN-based vi-
sual features, and the DAE-based fused visual/speech features
in a three-stage process including a two-layer random walk. The
retrieval performance was significantly improved in the prelim-
inary experiments.
Index Terms: image retrieval, speech annotation, word repre-
sentation, paragraph vector, convolutional neural network, deep
autoencoder, random walk, fused features

1. Introduction
With the popularity of digital cameras and smart phones, many
people saved huge collections of personal photos, but found it
challenging to browse across the collection to find a desired
photo. Users usually prefer to use personal words as queries to
look for photos (e.g. who, where, when, what (objects/events),
such as “uncle Bill’s house” or “wedding ceremony”). This
makes the very successful content-based image retrieval [1, 2]
less useful here, because it requires an example photo as the
query. The huge number of annotated photos over the Internet
can be useful in identifying photos of publicly known objects
(such as “White House”) [3, 4], but not necessarily for the per-
sonal photo descriptions considered here. Manual annotation
of each individual photo is certainly useful, but not attractive at
all. This led to the idea of annotating some photos with speech
[5, 6], and this task seems to be simply the spoken document
retrieval [7, 8, 9].

A major issue in spoken document retrieval is that the query
and its relevant documents may use different set of words. La-
tent topics or factor analysis can handle this issue to some ex-
tent, with probabilistic latent semantic analysis (PLSA) and
non-negative matrix factorization (NMF) as two typical exam-
ples [10, 11]. But PLSA and NMF may not be able to solve
the problem here, because the query and the labels for related
photos may be in several different categories (e.g. some pho-
tos by where and some by who, while the query by event) or

use different sets of words, and the latent relationships among
different terms, specially in different categories, very possibly
cannot be trained with very sparse personal annotations. This
led to the concept of using image features jointly with speech
annotations [12]. Related photos may be linked by image fea-
tures if annotated very differently, or even not annotated at all.

In recent works, we proposed to fuse local image fea-
tures (e.g. visual words by clustering low level image fea-
tures [13, 14]) and global image concepts (e.g. “people” or
“outdoor” by Columbia374 detector [15]) with the sparse, free-
form, and spontaneously spoken annotations [16]. We fur-
ther enhanced the sparse voice annotations by finding seman-
tically/syntactically related words with continuous space word
representations, and modeled the relationships among photos
and their labels with NMF [17]. In addition, we reinforced the
retrieval process considering the different types of features with
two-layer mutually reinforced random walk [18, 19].

We propose a completely new framework for the task in
this paper. We estimate paragraph vectors for the speech anno-
tation, extract more precise image semantic features using deep
convolutional neural network (CNN), and fuse the speech and
visual features together with a deep autoencoder (DAE). These
different types of features are properly used in a three-stage re-
trieval process. Significant improvements in performance were
observed in preliminary experiments.

2. Proposed Approach
2.1. Overview of the Proposed Approach

As shown in Figure 1, in the preparation phase on the left, we
first have a deep convolutional neural network (CNN) model
trained with an image database as at the upper left corner. This
CNN model is able to project each photo on a 1000-dimensional
semantic space and construct a 1000-dim posterior probability
vector to be taken as the visual features of the photos. On the
lower left of Figure 1, we also train a continuous space word
representation model and a paragraph vector model with a large
text corpus, based on which the word vectors and paragraph
vectors for the speech annotations are also obtained as speech
features. In the middle of Figure 1, we train a deep autoencoder
(DAE) model to fuse the visual and speech features, which can
transform any input photo into the visual/speech fused semantic
representation no matter it is annotated or not.

In the retrieval phase on the right of Figure 1, given a query
in text form, in stage 1 we first compare the query with all word
arcs in the lattices of the speech annotations based on the sim-
ilarity in continuous space word representations to select some
initial photos. In stage 2, the results obtained in stage 1 are
extended by selecting more photos based on the visual CNN
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features and visual/speech fused DAE features. Two-layer ran-
dom walk is finally performed in stage 3 to re-rank the retrieved
photos to give the final photo list.

2.2. Visual Features: Convolutional Neural Network

Deep convolutional neural networks (CNN) have been found
very useful in many image-based complex tasks. In this work,
we use the CNN model trained with the ImageNet database
[20, 21] to extract the visual features for each photo. Ima-
geNet is an image database organized according to the WordNet
[22] hierarchy (currently including only the nouns), where each
meaningful concept in WordNet is possibly described by multi-
ple words or phrases, and each node of the hierarchy is depicted
by hundreds or thousands of images.

We simply feed the personal photos into the well-trained
CNN model available in the Caffe website [23, 24] to project
each of them onto the 1000-dim pre-defined semantic space af-
ter softmax function to extract the visual features of the photos.
The 1000-dim visual features before softmax function in CNN
are also used to train the deep autoencoder fusing visual/speech
features.

Figure 1: The proposed approach

2.3. Speech Features: Word Vector and Paragraph Vector

The speech annotation is the key information here because it
provides the most important personal semantic concepts such
as “uncle Bill’s house” or “Mary’s wedding ceremony”. But
these speech annotations can be very spontaneous under varying
acoustic conditions and may include out-of-vocabulary (OOV)
words. The one-best recognition accuracy can be low. We there-
fore represent each utterance by a lattice, and find the continu-
ous space word vector for every word item on the arcs of the
lattices.

2.3.1. Continuous Space Word Representation

Many different models were developed for representing words
as vectors in continuous space [25, 26, 27, 28, 29]. Recur-
rent neural network language model (RNNLM) as in Figure
2(a) used the hidden layer at the previous time, h(t − 1), with
a recurrent structure to take into account the previous context
[28]. Continuous bag-of-words model (CBOW) as in Figure
2(b) learned to predict the present word w(t) based on the pre-
ceding and following words such as w(t− 2), w(t− 1), w(t+
1), w(t+2) via a projection layer without non-linear elements.
Continuous Skip-gram model as in Figure 2(c) is very similar to
CBOW, but with the layers reversed. The word representation
can be obtained from the transformation for the projection layer
of CBOW or Skip-gram model [29]. It was shown that CBOW
and continuous Skip-gram models are better than RNNLM for
both syntactic and semantic tasks.

Figure 2: Neural networks for modeling word representations:
(a) RNNLM (b) CBOW (c) Skip-gram

2.3.2. Paragraph Vector

The paragraph vector was proposed recently to represent each
paragraph (or document) by a vector which is trained with the
word vectors for the words in the paragraph when predicting the
following words in the paragraph [30]. Such paragraph vectors
may have the potential to overcome the weaknesses of models
based on bag-of-words by considering the word ordering, rep-
resenting the missing information from the current context, and
somehow characterizing the topics of the paragraph. Empiri-
cal results showed that paragraph vectors outperformed models
based on bag-of-words as well as other techniques for text rep-
resentations, and achieved new state-of-the-art results on sev-
eral text classification and sentiment analysis tasks [30].

In the paragraph vector learning framework as shown in
Figure 3, every paragraph with a single paragraph id is mapped
to a unique vector (such as v0), represented by a column in
the paragraph representation matrix D, and every word (such
as word 1, word 2, word 3) is also mapped to a unique vector
(such as v1,v2,v3), represented by a column in the word rep-
resentation matrix M . The paragraph vector and word vectors
are averaged or concatenated to predict the next word (such as
word 4) in a context of fixed-length sampled by a sliding win-
dow over the paragraph. The paragraph vector is shared across
all contexts generated from the same paragraph but not across
paragraphs. The word vector matrix M is shared across all
paragraphs, so the vectors for the same word are the same for
all paragraphs. In this work, we represent each speech annota-
tion utterance as a lattice, and pick up the top N possible paths
on it to form a paragraph which shares the same paragraph id.
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Figure 3: The framework for learning paragraph vectors.

2.4. Fused Features: Deep Autoencoder (DAE)

Because only 30% of the photos are annotated by spoken de-
scriptions while all photos have CNN visual features, we first
train a Deep AutoEncoder (DAE) [31, 32] using visual features
for several epochs, and then use the paragraph vectors for the
speech annotations to enhance the DAE model. In this way,
we properly fuse the visual and speech features for the photos.
As shown in Figure 4, the DAE is trained first with the visual
features only (denoted as x, and normalized to [0, 1]) as the
training input at the bottom right, while the training target on
the top right being the same x. This gives the right path shown
with solid lines, with the output x̂ on the top right close to x.
In the feed-forward stage as in (1) (2) (3) below, we can calcu-
late the distortion function E(x̂, x) for each visual feature set x
which can be a mean square error or some other error function
in the output layer. The errors will then be back-propagated and
the parameters updated by stochastic gradient decent (SGD) al-
gorithm.

o(0) = x , (1)

o(l) = f(W (l)o(l−1) + bl) , 1 ≤ l ≤ N − 1 , (2)

x̂ = o(N) = g(W (N)o(N−1) + bN ) , (3)

where x is the visual feature vector, ol the values on the l-th
layer, f(.) and g(.) the sigmoid function, and x̂ the correspond-
ing output.

After finishing training the right part including all W ’s and
b’s in Figure 4, we then add the left part shown with dotted lines
including V ’s and c’s in the second stage of training using those
photos with speech annotations. The input speech features z
are the paragraph vectors for the speech annotations which give
extra dimensions in both input and output layers, denoted as z
and ẑ respectively (the training target is also z, so the output ẑ
is close to z). After randomly initializing the extra dimensions
of the weight matrices and bias vectors V ’s and c’s, we can
continue the training process in exactly the same way as in (1)
(2) (3) and keep updating all parameters including W ’s, b’s,
V ’s and c’s, except now the input is y = (z,x) and output is
ŷ = (ẑ, x̂).

With this DAE trained, we can now feed each photo (with
speech annotation z or not) into the DAE model and extract its
fused visual/speech features by picking up the feature vectors
on the bottle-neck layer of the DAE.

2.5. Photo Retrieval Phase

With the CNN visual features, the continuous word vector and
the paragraph vector for speech features, and the DAE fused
features, we are ready to enter the photo retrieval phase. There
are three stages here are given below.

Figure 4: Deep autoencoder model

2.5.1. Stage 1: annotated photo retrieval by word vectors

Because speech annotations may carry explicitly or implicitly
the most important key semantics about the personal photos, we
represent the speech annotation for a photo as a bag-of-words,
which includes all word items for all arcs in the lattice with
high enough confidence scores, each represented as a contin-
uous space word vector. Given a user query which is a word
also represented as a word vector, for each annotated photo, we
take the top k words having the highest cosine similarity with
the query, and the average of these k cosine similarity values
is taken as the relevance score for the annotated photo. In this
stage, we pick up the top m photos with the highest scores as
the result. Of course only those photos with speech annotations
can be retrieved at this stage.

2.5.2. Stage 2: Extended retrieval with DAE fused features

All photos in the archive are fed into the DAE to extract the
visual/speech fused features (for those photos without annota-
tion, the input is y = (0,x)). We then concatenate such a DAE
feature vector with the 1000-dim CNN visual vector. In this sec-
ond stage, for each of the m first-pass retrieved photos, n more
photos in the archive can be found based on the cosine simi-
larity between the DAE-CNN concatenated vectors. The scores
of these n photos can be set as the scores of first-pass retrieved
photo they are similar to weighted by the cosine similarity val-
ues here.

2.5.3. Stage 3: Two-layer Random Walk Enhancement

The photo scores from stage 2 can be further enhanced by the
two-layer random walk [18, 19] as in Figure 5. Each node in the
lower layer represents a photo collected in stage 2, while that in
the upper layer represents a photo selected in the stage 1 which
has speech annotation. Let S(0)

U , S(0)
L represent respectively

the vectors for the initial scores for nodes in upper and lower
layers evaluated at stage 1 and 2, and S(t)

U , S(t)
L the enhanced

version of them at the t-th iteration. The score propagation can
be expressed as random walk in (4) below,

{
S

(t)
U = (1− α)S

(0)
U + α · ET

UUEULS
(t−1)
L (4− 1)

S
(t)
L = (1− α)S

(0)
L + α · ET

LLELUS
(t−1)
U (4− 2)

(4)
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where EUU (based on expected term frequency on the lattice),
EUL (based on paragraph vectors), and ELL (based on CNN
features) are respectively the upper-to-upper, upper-to-lower,
and lower-to-lower row-normalized cosine similarity matrices,
etc. For example, in (4 − 2) the scores of upper layer S(t−1)

U

are weighted first by the lower-to-upper similarity ELU then by
the lower-to-lower similarity ELL, and then contribute to the
scores of the lower layer S(t)

L . In this way the scores for the
nodes are propagated and smoothed, such that nodes similar to
more high-score nodes will have higher scores and so on, be-
cause the score of a node is distributed to other nodes based on
the similarity.

Figure 5: A simplified example of the two-layer random walk.

3. Experiments
3.1. Experiment Setup

The photo archive was taken from a Flickr user who has more
than ten thousand photos on the web with diversified topics. We
randomly selected 7777 from them to be used here. Several stu-
dents generated the annotation text (primarily in Chinese) spon-
taneously, most indicating one or two categories of information
(e.g. where or who) about the photos explicitly or implicitly,
many including OOV words. The audio for these annotations
were recorded by 57 students without constraints on the micro-
phone or the acoustic conditions.

The speaker independent (SI) acoustic models were adapted
by 30 utterances for each speaker to generate the speaker
adapted (SA) models. A language model interpolated from two
models respectively trained by news corpora and Plurk corpora
was used. The recognition accuracy for the very free speech an-
notations was only 40.3% for words. Only 30% of the photos
(2100) randomly selected out of the 7777 were allowed to have
speech annotations, while the other 70% were assumed to have
image features only. Another five students generated 32 queries
(4 where, 4 who, 4 event and 20 object) and labeled their ground
truths for evaluation. Each query is a Chinese word composed
of 2 or 3 syllables. For word representation, we used a corpus
of 760 million words collected from a popular Chinese based
BBS forum in Taiwan covering many topics, including photo
annotations, to train the RNNLM, CBOW and Skip-gram mod-
els for a 436k-word lexicon, producing 300-dimensional word
vectors. The paragraph vector model was then trained based on
these word vectors. The CNN model used was the one avail-
able on Caffe website [23, 24] with a subset of ImageNet [20]
database of about 1.2 million training images and the 1000 pre-
defined semantic targets were based on ImageNet Large Scale
Visual Recognition Challenge 2012 [21].

3.2. Experimental Results

The results in terms of MAP@50 (mean average precision [33]
evaluated for the top 50 retrieved objects) are listed in Table
1, in which Section (A) is the baseline obtained in the previ-

ous works [16, 17]. Row (a) is for NMF only, in which visual
features and speech features (including word vector representa-
tions) were embedded in the matrix and fused by NMF, while
two-layer random walk was applied in addition in row (b). We
can see the performance was not satisfactory with NMF only,
while two-layer random walk was very helpful in enhancing the
output.

Section (B) is for the proposed approach. In row (c) for
stages 1 and 2 but not including the two-layer random walk of
stage 3, we see the various advanced features carrying more se-
mantic information plus the framework of stages 1 and 2 offered
much better performance (rows (c) vs (a) both without random
walk). When the two-layer random walk in stage 3 was ap-
plied in addition in row (d), we see significant improvement was
achieved with the random walk (rows (d) vs (c)), and the fea-
tures and framework proposed here are very helpful even with
the random walk enhancement (rows (d) vs (b) both with ran-
dom walk). These results implied the CNN visual features pro-
vided very good global visual concepts, the paragraph vectors
offered very good global spoken concepts, and the DAE fea-
tures properly fused the two. All these information are jointly
used in stage 2, and further mutually reinforced in the random
walk of stage 3.

The results in rows (c)(d) are for a good selection of the
parameters m (number of photos selected in stage 1 for each
query) and n (number of extra photos selected in stage 2 for
each query). The results for a few other combinations of m and
n are listed in rows (e)(f)(g), all producing a total ofm(n+1) =
200 photos to be used in the lower layer of the random walk. We
seem = 50 and n = 3 in row (d) offered the best performance,
while the performance degraded with smaller m. Obviously all
photo ranking and selection processes in stage 2 and 3 were
extended from the m photos selected in stage 1, and therefore
better choice of m is critical.

Table 1: Experimental results: (A) Baselines with NMF and
with 2-Layer random walk in addition, (B) Proposed approach
for different choices of parameters.

Approaches Details MAP@50

(A) Baselines
(a) NMF only
(with word vectors) 15.72%

(b) NMF + 2-Layer RW 25.12%

(B)

Stage 1 + 2 only (c) M = 50, n = 3 29.82%

Stage 1 + 2 + 3

(d) M = 50, n = 3 32.05%
(e) M = 40, n = 4 31.29%
(f) M = 20, n = 9 27.61%
(g) M = 10, n = 19 24.89%

4. Conclusions
This paper proposed a new framework for semantic retrieval of
personal photos with sparse voice annotations and high-level
personal queries. We propose several advanced features for
this task including continuous space word vectors and para-
graph vectors for speech features, CNN for visual features, and
DAE for fused visual/speech features, to be jointly used in a
3-stage retrieval framework. In the preliminary experiments,
the proposed approaches achieved significant performance im-
provement compared to those obtained in previous works.
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