-
Introduction of this course: pdf,pptx (2018/03/02)
-
HW0: link (2018/03/02)
-
Theory 1 - Why Deep Structure? pdf,pptx (2018/03/09)
- Theory 1-1: Can shallow network fit any function? video
- Theory 1-2: Potential of Deep video
- Theory 1-3: Is Deep better than Shallow? video
-
HW1-1: link (2018/03/09)
-
Theory 2 - Optimization pdf,pptx (2018/03/16)
- Theory 2-1: When Gradient is Zero video
- Theory 2-2: Deep Linear Network video
- Theory 2-3: Does Deep Network have Local Minima? video
- Theory 2-4: Geometry of Loss Surfaces (Conjecture) video
- Theory 2-5: Geometry of Loss Surfaces (Empirical) video
-
HW1-2: link (2018/03/16)
-
Theory 3 - Generalization (2018/03/23)
-
HW1-3: link (2018/03/23)
-
Computational Graph: pdf,pptx, video (2018/03/31)
-
Special Network Structure:
-
HW2-1: link (2018/03/30)
-
HW2-2: link (2018/04/13)
-
Special Training Technology:
-
Generative Adversarial Network (GAN):
-
Introduction pdf,pptx,video (2018/05/04)
-
Conditional GAN pdf,pptx,video (2018/05/11)
-
Unsupervised Conditional GAN pdf,pptx,video (2018/05/18)
-
Theory pdf,pptx,video (2018/05/11)
-
General Framework pdf,pptx,video (2018/05/11)
-
WGAN, EBGAN pdf,pptx,video (2018/05/18)
-
InfoGAN, VAE-GAN, BiGAN pdf,pptx,video (2018/05/18)
-
Application to Photo Editing pdf,pptx,video (2018/05/18)
-
Application to Sequence Generation pdf,pptx,video (2018/05/25)
-
Application to Speech (by Dr. Yu Tsao) pdf,pptx (2018/06/01)
-
Evaluation of GAN pdf,pptx,video (2018/05/25)
-
HW3-1: link (2018/05/04)
-
HW3-2: link,tips (2018/05/11)
-
HW3-3: link (2018/05/18)
-
Deep Reinforcement Learning:
-
Proximal Policy Optimization (PPO) pdf,pptx,video (part 1),video (part 2) (2018/06/01)
-
Q-Learning pdf,pptx,video (part 1),video (part 2),video (part 3) (2018/06/08)
-
Actor-critic pdf,pptx,video (2018/06/15)
-
Sparse Reward pdf,pptx,video (2018/06/15)
-
Imitation Learning pdf,pptx,video (2018/06/15)
-
HW4-1: link (2018/06/01)
-
HW4-2: link (2018/06/08)