Machine Learning 2022 Spring


News

21

Feb

Github

課程Github: Github

Syllabus

Date Topic Preparation - zh Preparation - en Class Material Extra Material
2/18 Lecture 1:Introduction of Deep Learning 影片 1
影片 2
Video 1
Video 2
2022:
Introduction
Week 1
Pytorch 1
Pytorch 2
Colab

Rules: ppt / pdf
Class intro: ppt / pdf
Pytorch Tutorial 1: pdf
Pytorch Tutorial 2: pdf
Colab Tutorial: pdf
Environment Setup pdf
Introduction of Deep Learning
Backpropagation
Predicting Pokémon CP
Pokemon classification
Logistic Regression
2/25 Lecture 2:What to do if my network fails to train 影片 1
影片 2
影片 3
影片 4
影片 5
Video 1
Video 2
Video 3
Video 4
Video 5
2022:
Basic theory
Week 2

Theory: ppt / pdf
Gradient Descent (Demo by AOE)
Beyond Adam (part 1)
Beyond Adam (part 2)
3/04 Lecture 3:Image as input 影片
Video
2022:
Why deep/ Validation
Week 3 - Validation
Week 3 - Why Deep

Validation: ppt / pdf
Why Deep: ppt / pdf
Spatial Transformer Layer
3/11 Lecture 4:Sequence as input 影片 1
影片 2
Video 1
Video 2
2022:
科技部 X Talent 課堂演講
RNN (part 1)
RNN (part 2)
GNN (part 1)
GNN (part 2)
3/18 Lecture 5:Sequence to sequence 影片 1
影片 2
影片 3
Video 1
Video 2
Video 3
2022:
Self-attention
Week 5

xformer: ppt / pdf
NAT model
Pointer network
3/25 Lecture 6:Generation 影片 1
影片 2
影片 3
影片 4
Video 1
Video 2
Video 3
video 4
2022:
Privacy for ML
(吳沛遠老師授課)

2021:
GAN: ppt / pdf
Theory of GAN (part 1)
Theory of GAN (part 2)
Theory of GAN (part 3)
VAE
FLOW-based Model
4/01 Recent Advance of Self-supervised learning for NLP 影片 1
影片 2
影片 3
影片 4
Video 1
Video 2
Video 3
2022:
Recent Advance of Self-supervised learning for NLP
(姜成翰助教授課)
Week 7
pdf

2021:
BERT: ppt / pdf
BERT (part 1)
BERT (part 2)
GPT-3
4/08 期中考週不上課
4/15 Lecture 7:Self-supervised learning for Speech and Image 2022:
SSL for Speech and Image:
video
ppt / pdf

4/22 Lecture 8:Auto-encoder/ Anomaly Detection 影片 1
影片 2
影片 3
影片 4
影片 5
影片 6
影片 7
影片 8
Video 1
Video 2
2022:
訊連玩美課堂演講

2021:
Auto-Encoder: ppt / pdf
PCA
t-SNE
4/29 Lecture 9:Explainable AI 影片 1
影片 2
Video 1
Video 2
2022:
Adversarial Attack for NLP PART:1
(姜成翰助教授課)
Week 11
pdf

2021:
Explainable AI: ppt / pdf
5/06 Lecture 10:Attack 影片 1
影片 2
Video 1
Video 2
2022:
Adversarial Attack for NLP PART:2
(姜成翰助教授課)
Week 12
pdf

2021:
Adversarial Attack: ppt / pdf
5/13 Lecture 11:Adaptation 影片 1 Video 2 2022:
More about self-supervised learning:
video
ppt / pdf

2021:
Adaptation: ppt / pdf
5/20 Lecture 12:Reinforcement Learning 影片 1
影片 2
影片 3
影片 4
影片 5
Video 1
Video 2
Video 3
Video 4
Video 5
2022:
Quantum Machine Learning
(鄭皓中教授授課)

2021:
DRL: ppt / pdf
5/27 Lecture 13:Network Compression 影片 1
影片 2
Video 1
Video 2
2021:
Network Compression: ppt / pdf
PPO
Q-learning (part 1)
Q-learning (part 2)
6/03 Lecture 14:Life-long Learning
影片 1
影片 2
影片 3
Video 1
Video 2
2022:
期末考週不上課

2021:
Life-long Learning: ppt / pdf
6/10 Lecture 15:Meta Learning 影片 1
影片 2
Video 1
Video 2
2022:
More about Meta Learning

Meta
ppt / pdf

MAML (part 1)
MAML (part 2)
MAML (part 3)
MAML (part 4)
MAML (part 5)
MAML (part 6)
MAML (part 7)
MAML (part 8)
MAML (part 9)
Learnable Gradient Descent (pat 1)
Learnable Gradient Descent (pat 2)
Learnable Gradient Descent (pat 3)
Metric-based (part 1)
Metric-based (part 2)
Metric-based (part 3)
Train+Test as RNN

Homework

The information here is tentative and subject to change. Please read the requirement of each homework before deadline.

Date Homework Topic Video Slide Code Submission Homework Deadline
HW 1 2/18 Regression Kaggle: 02/23/2022 23:59:59 (UTC+8)
NTU COOL: 02/27/2022 23:59:59 (UTC+8)
HW 2 2/25 Classification 2022/3/18 23:59 (UTC+8)
HW 3 3/04 CNN 2022/3/25 23:59 (UTC+8)
HW 4 3/11 Self-attention 2022/4/01 23:59 (UTC+8)
HW 5 3/18 Transformer 2022/4/08 23:59 (UTC+8)
HW 6 4/01 GAN 2022/4/22 23:59 (UTC+8)
HW 7 4/15 BERT 2022/5/06 23:59 (UTC+8)
HW 8 4/22 Autoencoder 2022/5/13 23:59 (UTC+8)
HW 9 4/29 Explainable AI # 2022/5/20 23:59 (UTC+8)
HW 10 5/06 Attack 2022/5/27 23:59 (UTC+8)
HW 11 5/13 Adaptation 2022/6/3 23:59 (UTC+8)
HW 12 5/20 RL 2022/6/10 23:59 (UTC+8)
HW 13 5/27 Compression 2022/6/17 23:59 (UTC+8)
HW 14 6/03 Life-long # 2022/6/24 23:59 (UTC+8)
HW 15 6/10 Meta Learning 2022/7/01 23:59 (UTC+8)

Contact

Email: mlta-2022-spring@googlegroups.com

* 請同學來信務必依照正確寄信格式,並請善用NTU Cool討論區