Linear Algebra 2021 Fall
Common Website | Class Website | NTU COOL |
Exercises
DueDate | Topic | YouTube | PPT | ||
---|---|---|---|---|---|
10/ 1 | Exercise 1.6 (Oct. 1) | Video | PPT | ||
10/ 1 | Exercise 1.7 (Oct. 1) | Video | PPT | ||
10/ 8 | Exercise 1.7.2 (Oct. 8) | Video | PPT | ||
10/ 8 | Exercise 1.4 (Oct. 8) | Video | PPT | ||
10/ 8 | Exercise 2.1 (Oct. 8) | Video | PPT | ||
10/15 | Exercise 2.1 (Oct. 15) | Video | PPT | ||
10/15 | Exercise 2.3 (Oct. 15) | Video | PPT | ||
10/22 | Exercise 2.4 (Oct. 22) | Video 1 2 | PPT | ||
10/22 | Exercise 4.1 (Oct. 22) | Video | PPT | ||
10/29 | Exercise 4.1 (Oct. 29) | Video 1 2 | PPT | ||
10/29 | Exercise 4.2 (Oct. 29) | Video | PPT | ||
10/29 | Exercise 4.3 (Oct. 29) | Video 1 2 | PPT | ||
11/ 5 | Exercise 4.3 (Nov. 5) | Video | PPT | ||
11/ 5 | Chapter 3 (Nov. 5) | Video | PPT | ||
11/ 5 | Review (Nov. 5) | Video | PPT | ||
11/19 | Exercise 4.4 (Nov. 19) | Video | PPT | ||
11/19 | Exercise 4.5 (Nov. 19) | Video | PPT😢 | ||
11/26 | Exercise 5.1 (Nov. 26) | Video (former half) | PPT | ||
11/26 | Exercise 5.2 (Nov. 26) | Video (latter half) | PPT | ||
12/10 | Exercise 5.2 (Dec. 10) | Video 1 2 | |||
12/10 | Exercise 5.3 (Dec. 10) | Video 1 2 | |||
12/10 | Chapter 5 (Dec. 10) | Video 1 2 | |||
12/17 | Exercise 7.3 (Dec. 17) | Video | PPT | ||
12/24 | Exercise 7.4 (Dec. 24) | Video (former half) | PPT | ||
12/24 | Exercise 7.5 (Dec. 24) | Video (latter half) | PPT |
😢 : Sorry for missing some handwriting.
🚧 : Under construction.
Course Materials
✓ | review | 🔍 | overview | ★ | basic concept | + | optional | ||||
def. | definition | ex. | example | pf. | proof | thm. | theorem |
✓ | review | |
🔍 | overview | |
★ | basic concept | |
+ | optional | |
def. | definition | |
ex. | example | |
pf. | proof | |
thm. | theorem |
Logistics | ||||||
---|---|---|---|---|---|---|
----- Course Policy ----- | YouTube | PPT | ||||
Chapter 1 | ||||||
DueDate | Topic | YouTube | Textbook | PPT | ||
1 linear | ||||||
9/22 | def. | Linear System | 1-1 | 1 - 4 | 1 - 4 | |
9/22 | ex. | Are they Linear System? | 1-2 | 5 - 7 | 5 - 7 | |
9/22 | ex. | Derivative and Integral are Linear Systems | 1-3 | 8 - 10 | 8 - 10 | |
2 course introduction | ||||||
yourself | + | Linear Algebra v.s. Compulsory Courses (optional) | 2 | 1 - 4 | 1 - 4 | |
yourself | + | Course Overview (optional) | 3 | 1 - 6 | 1 - 6 | |
3 vector | ||||||
yourself | ✓ | Vector | 4-1 | 1.1 | PDF link | PPT link |
yourself | ✓ | Properties of Vector | 4-2 | 1.1 | PDF link | PPT link |
4 system of linear equations | ||||||
9/24 | ✓ | System of Linear Equations | 5-1 | 1.3 | 1 - 2 | 1 - 2 |
9/24 | ★ | System of Linear Equations = Linear System | 5-2 | 1.3 | 3 - 6 | 3 - 6 |
5 matrix | ||||||
9/24 | ✓ | Matrix | 6-1 | 1.1 | 1 - 3 | 1 - 3 |
9/24 | ✓ | Properties of Matrix | 6-2 | 1.1 | 4 - 5 | 4 - 5 |
9/24 | def. | Diagonal, Identity, Zero Matrix | 7-1 | 1.2 | 1 - 2 | 1 - 2 |
9/24 | def. | Transpose | 7-2 | 1.1 | 3 - 4 | 3 - 4 |
4 system of linear equations | ||||||
9/24 | ✓ | Matrix-Vector Product | 8-1 | 1.2 | 1 - 3 | 1 - 3 |
9/24 | ★ | Matrix-Vector Product = System of Linear Equations | 8-2 | 1.2 | 4 - 5 | 4 - 5 |
9/24 | ex. | Matrix-Vector Product (Example) | 8-3 | 1.2 | 6 | 6 |
9/24 | ★ | Properties of Matrix-Vector Product | 9-1 | 1.2 | 1 - 3 | 1 - 3 |
9/24 | ★ | Standard Vector | 9-2 | 1.2 | 4 | 4 |
6 solution | ||||||
9/24 | ✓ | Solution of System of Linear Equations (high school) | 10 | 1.3 | 1 - 4 | 1 - 4 |
9/24 | 🔍 | Solution of System of Linear Equations (this course) | 11 | 5 - 7 | 5 - 7 | |
9/24 | def. | Linear Combination | 12-1 | 1.2 | 1 - 2 | 1 - 2 |
9/24 | ★ | Linear Combination v.s. Solution | 12-2 | 1.2 | 3 - 4 | 3 - 4 |
9/24 | ex. | Linear Combination v.s. Solution (Example 1) | 12-3 | 1.2 | 5 - 6 | 5 - 6 |
9/24 | ex. | Linear Combination v.s. Solution (Example 2) | 12-4 | 1.2 | 7 - 9 | 7 - 9 |
9/24 | ex. | Linear Combination v.s. Solution (Example 3) | 12-5 | 1.2 | 10 - 12 | 10 - 12 |
9/29 | def. | Span | 13-1 | 1.6 | 1 - 2 | 1 - 2 |
9/29 | ex. | Span (Example) | 13-2 | 1.6 | 3 - 6 | 3 - 6 |
9/29 | ★ | Span v.s. Solution | 13-3 | 1.6 | 7 - 9 | 7 - 9 |
9/29 | thm. | Span (Theorem of Useless Vector) | 14-1 | 1.6 | 1 - 3 | 1 - 3 |
9/29 | pf. | Span (Theorem of Useless Vector) | 14-2 | 1.6 | 3 - 4 | 3 - 4 |
10/ 1 | def. | Dependent / Independent | 15-1 | 1.7 | 1 - 2 | 1 - 2 |
10/ 1 | ex. | Dependent / Independent (Example) | 15-2 | 1.7 | 3 - 5 | 3 - 5 |
10/ 1 | ★ | Dependent / Independent (Intuitive Explaination) | 15-3 | 1.7 | 6 - 8 | 6 - 8 |
10/ 1 | ★ | Dependent / Independent v.s. Solution | 15-4 | 1.7 | 9 | 9 |
10/ 1 | ex. | Dependent / Independent v.s. Solution (Example) | 15-5 | 1.7 | 10 | 10 |
10/ 1 | def. | Dependent / Independent (Another Definition) | 15-6 | 1.7 | 11 - 12 | 11 - 12 |
10/ 1 | pf. | Dependent / Independent v.s. Solution (Proof) | 15-7 | 1.7 | 13 | 13 |
10/ 1 | def. | Rank / Nullity | 16-1 | 1 - 2 | 1 - 2 | |
10/ 1 | ex. | Rank / Nullity (Example 1) | 16-2 | 3 | 3 | |
10/ 1 | ex. | Rank / Nullity (Example 2) | 16-3 | 4 | 4 | |
10/ 1 | ex. | Rank / Nullity (Example 3) | 16-4 | 5 | 5 | |
10/ 1 | ★ | Rank / Nullity v.s. Solution | 16-5 | 6 | 6 | |
10/ 1 | + | Story of Gaussian Elimination (optional) | 17 | 1.4 | PDF link | PPT link |
10/ 1 | ★ | Strategy of Finding Solutions | 18-1 | 1.4 | 1 - 5 | 1 - 5 |
10/ 1 | ★ | Elementary Row Operation | 18-2 | 1.4 | 6 - 11 | 6 - 11 |
10/ 1 | def. | REF | 19-1 | 1.4 | 1 - 4 | 1 - 4 |
10/ 1 | def. | RREF | 19-2 | 1.4 | 5 - 6 | 5 - 6 |
10/ 1 | def. | Pivot Columns | 19-3 | 1.4 | 7 | 7 |
10/ 1 | thm. | RREF is unique | 19-4 | 1.4 | 8 | 8 |
10/ 1 | ★ | RREF v.s. unique solution | 20-1 | 1.4 | 1 - 3 | 1 - 3 |
10/ 1 | ★ | RREF v.s. infinite solutions | 20-2 | 1.4 | 4 | 4 |
10/ 1 | ★ | RREF v.s. no solution | 20-3 | 1.4 | 5 | 5 |
10/ 1 | ~~~~~~ HW1 Released! ~~~~~~ | Go to... | ||||
10/ 6 | ex. | Find RREF (Example 1) | 21-1 | 1.4 | 1 - 8 | 1 - 8 |
10/ 6 | ex. | Find RREF (Example 1) - Find solution | 21-2 | 1.4 | 9 - 10 | 9 - 10 |
10/ 6 | ex. | Find RREF (Example 2) | 21-3 | 1.4 | 11 | 11 |
10/ 6 | ex. | Find RREF (Example 3) | 21-4 | 1.4 | 12 - 13 | 12 - 13 |
7 RREF | ||||||
10/ 6 | thm. | Column Correspondence Theorem | 22-1 | 1 - 4 | 1 - 4 | |
10/ 6 | ★ | Column Correspondence Theorem - Reason 1 | 22-2 | 5 | 5 | |
10/ 6 | thm. | Ax = 0 and Rx = 0 are equivalent | 22-3 | 6 - 8 | 6 - 8 | |
10/ 6 | ★ | Column Correspondence Theorem - Reason 2 | 22-4 | 9 - 10 | 9 - 10 | |
10/ 6 | ★ | No Row Correspondence Theorem | 22-5 | 11 | 11 | |
10/ 8 | ★ | How to Check Independence | 23-1 | 1.7 | 1 - 5 | 1 - 5 |
10/ 8 | ★ | Independence v.s. Column Correspondence Theorem | 23-2 | 1.7 | 6 - 7 | 6 - 7 |
10/ 8 | ★ | Independence v.s. Matrix Size | 23-3 | 1.7 | 8 - 12 | 8 - 12 |
10/ 8 | def. | Rank = no. of Pivot Columns = no. of non-zero rows in RREF | 24-1 | 1.7 | 1 - 2 | 1 - 2 |
10/ 8 | ★ | Independence v.s. Matrix Size (again) | 24-2 | 1.7 | 3 - 5 | 3 - 5 |
10/ 8 | def. | Rank v.s. Basic / Free Variables | 24-3 | 1.7 | 6 | 6 |
10/ 8 | 🔍 | Definitions of Rank and Nullity | 24-4 | 1.7 | 7 | 7 |
10/ 8 | ★ | All properties about always consistent | 25-1 | 1.7 | 1 - 4 | 1 - 4 |
10/ 8 | thm. | More than m vectors in Rm must be dependent | 25-2 | 1.7 | 5 - 8 | 5 - 8 |
10/ 8 | + | Three is a powerful number :) (optional) | 25-3 | 1.7 | 9 | 9 |
Chapter 2 | ||||||
---|---|---|---|---|---|---|
DueDate | Topic | YouTube | Textbook | PPT | ||
1 matrix multiplication | ||||||
10/ 8 | ✓ | Matrix Multiplication: inner product | 26-1 | 2.1 | 1 - 6 | 1 - 6 |
10/ 8 | ★ | Matrix Multiplication: Combination of Columns | 26-2 | 2.1 | 7 - 9 | 7 - 9 |
10/ 8 | ★ | Matrix Multiplication: Combination of Rows | 26-3 | 2.1 | 10 - 12 | 10 - 12 |
10/ 8 | ★ | Matrix Multiplication: Summation of Matrices | 26-4 | 2.1 | 13 - 15 | 13 - 15 |
10/ 8 | ★ | Block Multiplication | 26-5 | 2.1 | 16 - 18 | 16 - 18 |
10/ 8 | ex. | Block Multiplication - Example | 26-6 | 2.1 | 19 - 20 | 19 - 20 |
10/ 8 | ★ | Matrix Multiplication means multiple inputs | 27-1 | 2.1 | 1 - 2 | 1 - 2 |
10/ 8 | ★ | Matrix Multiplication represents Composition | 27-2 | 2.1 | 3 - 7 | 3 - 7 |
10/ 8 | ex. | Matrix Multiplication represents Composition - Example | 27-3 | 2.1 | 8 - 9 | 8 - 9 |
10/13 | ★ | Matrix Multiplication - Properties | 28-1 | 2.1 | 1 - 4 | 1 - 4 |
10/13 | ★ | Matrix Multiplication - Transpose | 28-2 | 2.1 | 5 - 6 | 5 - 6 |
10/13 | + | Matrix Multiplication - Pratical Computation Issue (optional) | 28-3 | 2.1 | 7 - 8 | 7 - 8 |
2 matrix inverse | ||||||
10/13 | def. | Inverse of Matrix | 29-1 | 2.4 | 1 - 4 | 1 - 4 |
10/13 | ★ | Inverse of Matrix - Properties | 29-2 | 2.4 | 5 - 6 | 5 - 6 |
10/13 | ★ | Inverse of Matrix - Matrix Transpose | 29-3 | 2.4 | 8 | 8 |
10/13 | ★ | Inverse of Matrix - Matrix Multiplication | 29-4 | 2.4 | 7 | 7 |
10/15 | + | Inverse of Matrix - Solving System of Linear Equations (optional) | 30-1 | 2.4 | 1 - 2 | 1 - 2 |
10/15 | + | Inverse of Matrix - Input-output Model 1 (optional) | 30-2 | 2.4 | 3 - 5 | 3 - 5 |
10/15 | + | Inverse of Matrix - Input-output Model 2 (optional) | 30-3 | 2.4 | 6 | 6 |
10/15 | thm. | Invertible Matrix Theorem | 31-1 | 2.4 | 1 - 3 | 1 - 3 |
10/15 | ✓ | Review: one-to-one and onto | 31-2 | 2.8 | 4 - 5 | 4 - 5 |
10/15 | ★ | One-to-one in Linear Algebra | 31-3 | 2.8 | 6 | 6 |
10/15 | ★ | Onto in Linear Algebra | 31-4 | 2.8 | 7 | 7 |
10/15 | ★ | Invertible = One-to-one and Onto | 31-5 | 2.8 | 8 - 10 | 8 - 10 |
10/15 | pf. | Invertible Matrix Theorem - Proof (part 1) | 32-1 | 2.4 | 1 - 5 | 1 - 5 |
10/15 | pf. | Invertible Matrix Theorem - Proof (part 2) | 32-2 | 2.4 | 6 - 8 | 6 - 8 |
10/15 | def. | Elementary Matrix | 33-1 | 2.3 | 1 - 5 | 1 - 5 |
10/15 | ★ | Inverse of Elementary Matrix | 33-2 | 2.3 | 6 | 6 |
10/15 | pf. | Invertible Matrix Theorem - Proof (part 3) | 33-3 | 2.4 | 7 - 8 | 7 - 8 |
10/15 | + | Find A-1 (Special Case: 2x2 matrices) (optional) | 34-1 | 2.4 | 1 - 2 | 1 - 2 |
10/15 | ★ | Find A-1 | 34-2 | 2.4 | 3 - 5 | 3 - 5 |
10/15 | ★ | Find A-1C | 34-3 | 2.4 | 6 | 6 |
10/15 | ~~~~~~ HW2 Released! ~~~~~~ | Go to... |
Chapter 4 | ||||||
---|---|---|---|---|---|---|
DueDate | Topic | YouTube | Textbook | PPT | ||
subspace | ||||||
10/20 | def. | Subspace | 35-1 | 4.1 | 1 - 3 | 1 - 3 |
10/20 | ex. | Subspace - Example | 35-2 | 4.1 | 4 | 4 |
10/20 | ★ | Subspace v.s. Span | 35-3 | 4.1 | 5 | 5 |
10/20 | def. | Column Space and Row Space | 35-4 | 4.3 | 6 - 9 | 6 - 9 |
10/20 | def. | Null Space | 35-5 | 4.3 | 10 - 11 | 10 - 11 |
10/22 | def. | Basis | 36-1 | 4.2 | 1 - 2 | 1 - 2 |
10/22 | ex. | Basis - Example | 36-2 | 4.2 | 3 | 3 |
10/22 | thm. | More Theorems of Span | 36-3 | 4.2 | 4 | 4 |
10/22 | thm. | Three Theorems of Basis | 36-4 | 4.2 | 5 | 5 |
10/22 | def. | Dimension | 36-5 | 4.2 | 6 - 8 | 6 - 8 |
10/22 | ★ | More than m vectors in Rm must be dependent (again and again) | 36-6 | 4.2 | 9 - 12 | 9 - 12 |
10/22 | pf. | Proof of Basis Theorem 1 - Reduction Theorem | 36-7 | 4.2 | 13 - 15 | 13 - 15 |
10/22 | pf. | Proof of Basis Theorem 2 - Extension Theorem | 36-8 | 4.2 | 16 - 17 | 16 - 17 |
10/22 | pf. | Proof of Basis Theorem 3 - Dimension | 36-9 | 4.2 | 18 | 18 |
10/22 | thm. | Dimension v.s. "Size" of Subspace | 37-1 | 4.3 | 19 | 19 |
10/22 | 🔍 | Three Theorems of Basis (review) | 37-2 | 4.2 | 20 - 21 | 20 - 21 |
10/22 | ★ | Is it a basis? - Based on Definition | 38-1 | 4.2 | 1 - 2 | 1 - 2 |
10/22 | ★ | Is it a basis? - Easier Way | 38-2 | 4.2 | 3 - 4 | 3 - 4 |
10/22 | ex. | Is it a basis? - Example | 38-3 | 4.2 | 5 - 6 | 5 - 6 |
10/22 | ★ | Basis and Dimension of Column Space (More definitions of Rank!) | 39-1 | 4.3 | 1 - 3 | 1 - 3 |
10/22 | ★ | Basis and Dimension of Row Space (More definitions of Rank!) | 39-2 | 4.3 | 4 - 5 | 4 - 5 |
10/22 | thm. | Rank A = Rank AT !!! | 39-3 | 4.3 | 6 | 6 |
10/22 | ★ | Basis and Dimension of Null Space | 39-4 | 4.3 | 7 - 8 | 7 - 8 |
10/22 | thm. | Dimension Theorem | 39-5 | 4.3 | 9 | 9 |
10/27 | def. | Coordinate System | 40-1 | 4.4 | 1 - 3 | 1 - 3 |
10/27 | ex. | Coordinate System - Example | 40-2 | 4.4 | 4 | 4 |
10/27 | + | 莊子齊物論 (optional) | 40-3 | 4.4 | 5 - 8 | 5 - 8 |
10/27 | def. | Cartesian Coordinate System | 40-4 | 4.4 | 9 | 9 |
10/27 | + | 蓋亞思維 (optional) | 40-5 | 4.4 | 9 | 9 |
10/27 | ★ | A coordinate system is a basis | 40-6 | 4.4 | 10 - 11 | 10 - 11 |
10/27 | ★ | Other system to Cartesian | 41-1 | 4.4 | 1 - 4 | 1 - 4 |
10/27 | ★ | Cartesian to Other system | 41-2 | 4.4 | 5 | 5 |
10/27 | ★ | Change Coordinate | 41-3 | 4.4 | 6 | 6 |
10/29 | + | Equation of ellipse (optional) | 42-1 | 4.4 | 7 - 9 | 7 - 9 |
10/29 | + | Equation of hyperbola (optional) | 42-2 | 4.4 | 10 - 12 | 10 - 12 |
10/29 | + | 全面啟動 (optional) | 43-1 | 4.5 | 1 - 4 | 1 - 4 |
10/29 | ex. | Describing a function in another coordinate system | 43-2 | 4.5 | 5 - 8 | 5 - 8 |
10/29 | ★ | Function in Different Coordinate Systems | 43-3 | 4.5 | 9 - 11 | 9 - 11 |
10/29 | ex. | Function in Different Coordinate Systems - Example | 43-4 | 4.5 | 12 - 13 | 12 - 13 |
10/29 | ex. | Function in Different Coordinate Systems - Example | 43-5 | 4.5 | 14 - 17 | 14 - 17 |
Chapter 3 | ||||||
---|---|---|---|---|---|---|
DueDate | Topic | YouTube | Textbook | PPT | ||
determinant | ||||||
10/29 | + | Determinant (high school) (optional) | 44-1 | 3.1 | 1 - 2 | 1 - 2 |
10/29 | def. | Determinant - Cofactor Expansion | 44-2 | 3.1 | 3 - 5 | 3 - 5 |
10/29 | ex. | Determinant of 2x2 and 3x3 matrices | 44-3 | 3.1 | 6 | 6 |
10/29 | ex. | Determinant of 2x2 and 3x3 matrices | 44-4 | 3.1 | 7 | 7 |
10/29 | + | Determinant of a special gigantic matrix (optional) | 44-5 | 3.1 | 8 - 11 | 8 - 11 |
11/ 3 | def. | Three Basic Properties of Determinant | 45-1 | 1 - 3 | 1 - 3 | |
11/ 3 | ★ | Basic Property 1 | 45-2 | 4 | 4 | |
11/ 3 | ★ | Basic Property 2 | 45-3 | 5 - 6 | 5 - 6 | |
11/ 3 | ★ | Basic Property 3 | 45-4 | 7 - 11 | 7 - 11 | |
11/ 3 | + | From Basic Properties to Cofactor Expansion (2x2 matrix) (optional) | 45-5 | 12 - 13 | 12 - 13 | |
11/ 3 | + | From Basic Properties to Cofactor Expansion (3x3 matrix) (optional) | 45-6 | 14 - 15 | 14 - 15 | |
11/ 3 | + | From Basic Properties to Cofactor Expansion (nxn matrix) (optional) | 45-7 | 16 - 17 | 16 - 17 | |
11/ 5 | + | Formula of A-1 (optional) | 46-1 | 1 - 2 | 1 - 2 | |
11/ 5 | + | Formula of A-1 - Example (optional) | 46-2 | 3 | 3 | |
11/ 5 | + | Formula of A-1 - Proof (optional) | 46-3 | 4 | 4 | |
11/ 5 | + | Cramer’s Rule (optional) | 46-4 | 3.2 | 5 - 6 | 5 - 6 |
11/ 5 | + | Three Basic Properties of Determinant (review) (optional) | 47-1 | 3.2 | 1 - 3 | 1 - 3 |
11/ 5 | thm. | A is invertible = det (A) is not zero | 47-2 | 3.2 | 4 - 5 | 4 - 5 |
11/ 5 | ex. | example | 47-3 | 3.2 | 6 | 6 |
11/ 5 | thm. | Properties of Determinant | 47-4 | 3.2 | 7 | 7 |
11/ 5 | pf. | det(AB) = det(A)det(B) | 47-5 | 3.2 | 8 - 11 | 8 - 11 |
11/ 5 | pf. | det(A) = det (AT) | 47-6 | 3.2 | 12 - 16 | 12 - 16 |
11/ 5 | ~~~~~~ HW3 Released! ~~~~~~ | Go to... |
Chapter 5 | ||||||
---|---|---|---|---|---|---|
DueDate | Topic | YouTube | Textbook | PPT | ||
eigenvalues and eigenvectors | ||||||
11/24 | + | How to find a "good" coordinate system? (optional) | 48-1 | 5.1 | 1 - 2 | 1 - 2 |
11/24 | def. | Eigenvalues and Eigenvectors | 48-2 | 5.1 | 3 - 6 | 3 - 6 |
11/24 | ex. | Example | 48-3 | 5.1 | 7 - 10 | 7 - 10 |
11/24 | ★ | Do the eigenvectors correspond to an eigenvalue from a subspace? | 48-4 | 5.1 | 11 - 13 | 11 - 13 |
11/24 | def. | Eigenspace | 48-5 | 5.1 | 14 | 14 |
11/24 | ★ | Check whether a scalar is an eigenvalue | 48-6 | 5.1 | 15 - 16 | 15 - 16 |
11/24 | ex. | Example | 48-7 | 5.1 | 17 - 18 | 17 - 18 |
11/24 | ★ | Looking for Eigenvalues | 48-8 | 5.1 | 19 - 20 | 19 - 20 |
11/24 | ex. | Looking for Eigenvalues - Example 1 | 48-9 | 5.1 | 21 - 22 | 21 - 22 |
11/26 | ex. | Looking for Eigenvalues - Example 2 | 49-1 | 5.1 | 23 | 23 |
11/26 | ex. | Looking for Eigenvalues - Example 3 | 49-2 | 5.1 | 24 | 24 |
11/26 | def. | Characteristic Polynomial | 49-3 | 5.2 | 25 | 25 |
11/26 | ★ | Matrix A and RREF of A have different eigenvalues | 49-4 | 5.2 | 26 | 26 |
11/26 | thm. | Similar matrices have the same eigenvalues | 49-5 | 5.2 | 26 | 26 |
11/26 | thm. | More Properties of Characteristic Polynomial | 49-6 | 5.2 | 27 - 30 | 27 - 30 |
11/26 | + | PageRank: How does Google rank search results? (optional) | 50-1 | 1 - 3 | 1 - 3 | |
11/26 | + | PageRank: Introduction (optional) | 50-2 | 4 - 7 | 4 - 7 | |
11/26 | + | PageRank: Basic Idea (optional) | 50-3 | 8 - 10 | 8 - 10 | |
11/26 | + | PageRank: Formulation (optional) | 50-4 | 11 | 11 | |
11/26 | + | PageRank: Relation to Eigenvectors / Eigenvalues (optional) | 50-5 | 12 - 13 | 12 - 13 | |
11/26 | + | PageRank: Always having eigenvalue = 1 (optional) | 50-6 | 14 | 14 | |
11/26 | + | PageRank: When does dimension of eigenspace = 1 (optional) | 50-7 | 15 - 17 | 15 - 17 | |
11/26 | + | PageRank: How to make dimension of eigenspace = 1 (optional) | 50-8 | 18 | 18 | |
11/26 | + | PageRank: Power Method (optional) | 50-9 | 19 | 19 | |
11/26 | ~~~~~~ HW4 Released! ~~~~~~ | Go to... | ||||
12/ 1 | def. | Diagonalizable | 51-1 | 5.3 | 1 - 4 | 1 - 4 |
12/ 1 | ★ | Not all matrices are diagonalizable | 51-2 | 5.3 | 5 | 5 |
12/ 1 | ★ | How to diagonalize a matrix | 51-3 | 5.3 | 6 - 8 | 6 - 8 |
12/ 1 | thm. | Eigenvectors corresponding to distinct Eigenvalues is independent | 51-4 | 5.3 | 9 - 10 | 9 - 10 |
12/ 1 | ★ | Find independent eigenvectors | 52-1 | 5.3 | 11 | 11 |
12/ 1 | ex. | Example | 52-2 | 5.3 | 12 | 12 |
12/ 1 | ★ | Test for Diagonalizable Matrix | 52-3 | 5.3 | 13 - 14 | 13 - 14 |
12/ 1 | + | Application of Diagonalization 1: 這就是人生! (optional) | 52-4 | 5.3 | 15 | 15 |
12/ 1 | + | Application of Diagonalization 1: 你花了多少時間在念線性代數? (optional) | 52-5 | 5.3 | 15 - 18 | 15 - 18 |
12/ 1 | ex. | Diagonalization of Linear Operator | 52-6 | 5.3 | 19 - 20 | 19 - 20 |
12/ 1 | ★ | Application of Diagonalization 2: Find a good Coordinate System | 52-7 | 5.3 | 21 - 26 | 21 - 26 |
Chapter 7 | ||||||
---|---|---|---|---|---|---|
DueDate | Topic | YouTube | Textbook | PPT | ||
orthogonality | ||||||
12/ 8 | def. | Norm and Distance | 53-1 | 7.1 | 1 - 3 | 1 - 3 |
12/ 8 | def. | Dot Product and Orthogonal | 53-2 | 7.1 | 4 - 7 | 4 - 7 |
12/ 8 | thm. | Pythagorean Theorem | 53-3 | 7.1 | 8 | 8 |
12/ 8 | thm. | Dot Product v.s. Geometry | 53-4 | 7.1 | 9 | 9 |
12/ 8 | thm. | Triangle Inequality | 53-5 | 7.1 | 10 - 11 | 10 - 11 |
12/10 | def. | Orthogonal Set | 54-1 | 7.2 | 1 - 3 | 1 - 3 |
12/10 | ★ | Orthogonal Set v.s. Independent Set | 54-2 | 7.2 | 4 | 4 |
12/10 | def. | Orthonormal Set | 54-3 | 7.2 | 5 | 5 |
12/10 | def. | Orthogonal / Orthonormal Basis | 54-4 | 7.2 | 6 | 6 |
12/10 | thm. | Orthogonal Decomposition Theory | 54-5 | 7.2 | 7 - 8 | 7 - 8 |
12/10 | ex. | Example | 54-6 | 7.2 | 9 | 9 |
12/10 | thm. | Gram-Schmidt Process | 54-7 | 7.2 | 10 - 11 | 10 - 11 |
12/10 | ex. | Example | 54-8 | 7.2 | 12 - 13 | 12 - 13 |
12/10 | pf. | Proof of Gram-Schmidt Process (1): Obtaining Orthogonal Set | 54-9 | 7.2 | 14 | 14 |
12/10 | pf. | Proof of Gram-Schmidt Process (2): Obtaining Basis | 54-10 | 7.2 | 15 | 15 |
12/10 | def. | Orthogonal Complement | 55-1 | 7.3 | 1 - 4 | 1 - 4 |
12/10 | ex. | Example | 55-2 | 7.3 | 4 - 5 | 4 - 5 |
12/10 | thm. | B be a basis of W, then B⟂ = W⟂ | 55-3 | 7.3 | 6 - 7 | 6 - 7 |
12/10 | ex. | How to find W⟂ | 55-4 | 7.3 | 8 | 8 |
12/10 | thm. | Orthogonal Complement v.s. Null Space | 55-5 | 7.3 | 9 | 9 |
12/10 | thm. | u = w + z → w ∈ W, z ∈ W⟂ | 55-6 | 7.3 | 10 | 10 |
12/15 | def. | Orthogonal Projection | 56-1 | 7.4 | 11 - 13 | 11 - 13 |
12/15 | thm. | Closest Vector Property | 56-2 | 7.4 | 14 | 14 |
12/15 | def. | Orthogonal Projection Matrix | 56-3 | 7.3 | 15 | 15 |
12/15 | ★ | Orthogonal Projection on a line | 57-1 | 7.3 | 16 - 18 | 16 - 18 |
12/15 | thm. | Orthogonal Projection Matrix | 57-2 | 7.3 | 19 - 22 | 19 - 22 |
12/15 | pf. | Orthogonal Projection Matrix - Proof (part I) | 57-3 | 7.3 | 19 | 19 |
12/15 | pf. | Orthogonal Projection Matrix - Proof (part II) | 57-4 | 7.3 | 20 | 20 |
12/15 | ★ | Orthogonal Decomposition Theory v.s. Orthogonal Projection Matrix | 57-5 | 7.3 | 23 - 24 | 23 - 24 |
12/17 | ★ | Applications of Orthogonal Projection | 58-1 | 7.4 | 25 - 26 | 25 - 26 |
12/17 | ★ | Least Square Approximation - Problem Statement | 58-2 | 7.4 | 27 | 27 |
12/17 | ★ | Least Square Approximation - Solving by Orthogonal Projection | 58-3 | 7.4 | 28 - 30 | 28 - 30 |
12/17 | ex. | Least Square Approximation - Example 1 | 58-4 | 7.4 | 31 | 31 |
12/17 | ex. | Least Square Approximation - Example 2 | 58-5 | 7.4 | 32 - 34 | 32 - 34 |
12/17 | ex. | Least Square Approximation - Example 3 | 58-6 | 7.4 | 35 | 35 |
12/17 | def. | Orthogonal Matrix | 59-1 | 7.5 | 1 - 3 | 1 - 3 |
12/17 | def. | Norm-preserving | 59-2 | 7.5 | 4 - 5 | 4 - 5 |
12/17 | ★ | Orthogonal Matrix = Norm-preserving | 59-3 | 7.5 | 6 | 6 |
12/17 | thm. | Properties of Orthogonal Matrix | 59-4 | 7.5 | 7 | 7 |
12/17 | pf. | Properties of Orthogonal Matrix - Proof | 59-5 | 7.5 | 8 | 8 |
12/17 | thm. | det Q, PQ, Q⁻¹, Qᵀ | 59-6 | 7.5 | 9 | 9 |
12/17 | + | Orthogonal Operator (optional) | 59-7 | 7.5 | 10 - 12 | 10 - 12 |
12/17 | ~~~~~~ HW5 Released! ~~~~~~ | Go to... | ||||
12/22 | ★ | symmetric matrices: eigenvalues are always real (2x2 matrices) | 60-1 | 7.6 | 13 - 14 | 13 - 14 |
12/22 | thm. | symmetric matrices: eigenvalues are always real (general cases) | 60-2 | 7.6 | 15 | 15 |
12/22 | thm. | symmetric matrices: eigenvectors for different eigenvalues are orthogonal | 60-3 | 7.6 | 16 - 17 | 16 - 17 |
12/22 | thm. | symmetric matrices are diagonalizable | 60-4 | 7.6 | 18 | 18 |
12/22 | pf. | symmetric matrices are diagonalizable (proof I) | 60-5 | 7.6 | 19 | 19 |
12/22 | pf. | symmetric matrices are diagonalizable (proof II) | 60-6 | 7.6 | 20 - 21 | 20 - 21 |
12/22 | ex. | symmetric matrices are diagonalizable (example) | 60-7 | 7.6 | 22 | 22 |
12/22 | ex. | symmetric matrices are diagonalizable (example) | 60-8 | 7.6 | 23 | 23 |
12/22 | ★ | How to diagonalize symmetric matrices | 60-9 | 7.6 | 24 - 25 | 24 - 25 |
12/22 | thm. | Spectral Decomposition | 60-10 | 7.6 | 26 - 27 | 26 - 27 |
12/22 | ex. | Spectral Decomposition (example) | 60-11 | 7.6 | 28 | 28 |
12/24 | + | Singular Value Decomposition (SVD) (optional) | 61-1 | 7.7 | 1 - 3 | 1 - 3 |
12/24 | + | SVD v.s. Rank (optional) | 61-2 | 7.7 | 4 | 4 |
12/24 | + | SVD - Low Rank Approximation (optional) | 61-3 | 7.7 | 5 - 6 | 5 - 6 |
12/24 | + | SVD - Application (optional) | 61-4 | 7.7 | 7 - 9 | 7 - 9 |
12/24 | + | SVD - proof I (optional) | 61-5 | 7.7 | 10 | 10 |
12/24 | + | SVD - proof II (optional) | 61-6 | 7.7 | 11 | 11 |
12/24 | + | SVD - proof III (optional) | 61-7 | 7.7 | 12 | 12 |
Chapter 6 | ||||||
---|---|---|---|---|---|---|
DueDate | Topic | YouTube | Textbook | PPT | ||
vector space | ||||||
12/24 | ★ | 原來萬物都是 vector ! | 62-1 | 6.1 | 1 - 5 | 1 - 5 |
12/24 | def. | Vector Space | 62-2 | 6.1 | 6 - 8 | 6 - 8 |
12/24 | ★ | Revisit Subspace | 62-3 | 6.1 | 9 - 11 | 9 - 11 |
12/24 | ★ | Revisit Linear Combination and Span | 62-4 | 6.2 | 12 - 14 | 12 - 14 |
12/29 | ★ | Revisit Linear Transformation | 63-1 | 6.2 | 15 - 19 | 15 - 19 |
12/29 | ★ | Isomorphism | 63-2 | 6.2 | 20 - 21 | 20 - 21 |
12/29 | ★ | Revisit Basis | 63-3 | 6.3 | 22 - 25 | 22 - 25 |
12/29 | ★ | Vector Representation of Object | 63-4 | 6.4 | 26 | 26 |
12/29 | ★ | Matrix Representation of Linear Operator | 63-5 | 6.4 | 27 - 31 | 27 - 31 |
12/29 | ★ | Revisit Eigenvalue and Eigenvector | 63-6 | 6.4 | 32 - 35 | 32 - 35 |
12/31 | def. | Inner Product | 64-1 | 6.5 | 36 - 37 | 36 - 37 |
12/31 | ex. | Example | 64-2 | 6.5 | 38 - 39 | 38 - 39 |
12/31 | ★ | Revisit Orthogonal/Orthonormal Basis | 64-3 | 6.5 | 40 - 41 | 40 - 41 |
12/31 | ex. | Example | 64-4 | 6.5 | 42 - 44 | 42 - 44 |
1/14 | ~~~~~~ HW6 Released! ~~~~~~ | Go to... |
Homework
# | Date | Topic | TA | Slides | Video | ||
10/ 1 | Colab Tutorial | 陳建成 | Slides | Video | |||
HW1 | 10/ 1 | Cycle Detection | 林泓均 | Slides | Video | ||
HW2 | 10/15 | Hill Cipher | 劉聿珉 | Slides | Video | ||
HW3 | 11/ 5 | Cosine Transform and Its Application | 林冠廷 | Slides | Video | ||
HW4 | 11/26 | PageRank | 翁茂齊 | Slides | Video (original) | ||
HW5 | 12/17 | Linear Regression | 陳建成 | Slides | Video | ||
HW6 | 1/14 | SVD for Image Compression | 王凡林 | Slides | Video |